Bending-Unbending Analysis of Anisotropic Sheet under Plane Strain Condition

M. Salimi, M. Jamshidian, A. Beheshti, and A. Sadeghi Dolatabadi
Department of Mechanical Engineering, Isfahan University of Technology
Mobarakeh Steel Complex

Abstract: The mechanical behavior of cold rolled sheets is significantly related to residual stresses that arise from bending and unbending processes. Measurement of residual stresses is mostly limited to surface measurement techniques. Experimental determination of stress variation through thickness is difficult and time-consuming. This paper presents a closed form solution for residual stresses, in which the bending-unbending process is modeled as an elastic-plastic plane strain problem. An anisotropic material is assumed. To validate the analytical solution, finite element simulation is also demonstrated. This study is applicable to analysis of coiling-uncoiling, leveling and straightening processes.
فهرست عناوین

<table>
<thead>
<tr>
<th>علامت اصلی</th>
<th>علامت</th>
<th>معنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>∈</td>
<td>ضریب پواسون</td>
</tr>
<tr>
<td>σ</td>
<td>∈</td>
<td>نتش</td>
</tr>
<tr>
<td>θ</td>
<td>∈</td>
<td>نسبت نتش</td>
</tr>
<tr>
<td>b</td>
<td>∈</td>
<td>مرحله خمش</td>
</tr>
<tr>
<td>c</td>
<td>∈</td>
<td>الاستیک</td>
</tr>
<tr>
<td>p</td>
<td>∈</td>
<td>پلاستیک</td>
</tr>
<tr>
<td>r</td>
<td>∈</td>
<td>پساند</td>
</tr>
<tr>
<td>u</td>
<td>∈</td>
<td>مرحله واهمش</td>
</tr>
<tr>
<td>x,y,z</td>
<td>∈</td>
<td>راستهای مختصات</td>
</tr>
<tr>
<td>Y</td>
<td>∈</td>
<td>نقطه تسلیم</td>
</tr>
</tbody>
</table>

همراه با کشتی، مواد بدون گذر کار سخت، روش‌های تجریبی، روش‌های تحلیلی و روش‌های عددي دو بعدي و سه بعدی را شامل می‌شود [1-3]. بیشتر این تحقیقات از رویایساده برابری بین تکنیمنش و کشتی استفاده کردند و از میان آنها نعره‌ها کمی به بررسی جنبه‌های توینیک تنش جاری و تنش پساندن اختصاص داده‌اند.

این گروه‌ها و کانون خشک صفحه به هنر را به صورت کشتی توینیک و بکمک روش عدیدی برای کشتی جزئی توانستند. در این حالت فرض شده بود که ماده از معیار تسلیم فون مایزر و قانون جزئی همراه پرازول-راس نبود [4,5].

روندال یک تحلیل عدیدی ساده برای حالت خشک خالص پلاستیک در یک صفحه به هنر را ارائه کرد و سپس از روز آن بک در تقریب برای توینیک تنش پساند به دست آورد [6]. در این روش‌ها از اثبات ابتدایی بر فراز صرف نظر شده است.

1- مقدمه
توینیک تنش جاری و تنش پساندان که در فرآیند خشک و احتمال در ورود فلزات تولیدی توده به وجود می‌آید نقش بسیار مهمی در این عملیات دارد و البته این تکنیک‌ها برای توینیک تنش جاری نیز بسیار مفید بوده‌است.

روش‌های تجربی که به در دسته تجربی و غیر تجربی تقسیم می‌شوند. محدودیت‌های دارد. مثلاً روشنایی تجربی نظر مقطع زدن و یا به بالاردن سطحی، گران و وقت‌گیرند. از طرف دیگر روشنایی غیر تجربیی هم توانایی کافی برای مشخص کردن تونیک تنش را ندارند. از این رو استخراج یک حل تحلیلی برای بیان توینیک تنش مفید و منطقی است.

مطالعات بسیاری روی فرآیند خشک و احتمال انفجار شده است. این مطالعات گسترده و سمیعی از الاستیک و پلاستیکی شعاع انحنای خشک و برج، خشک خالص و خشک
در این بررسی فرض می‌شود که خروجی تور فولادی اولیه تنش زدایی شده و در تیجه عاری از تنش پسماند اولیه بوده و آثار کارهای پلاستیک تقلیل حذف و منحنی تنش- کرنش تا قبل از تحلیل هموار و خطی است.

از انجایی که ماه متین کرنشی برگز در قرار نمی‌گیرد، می‌توان از آثار کرنش سخت صرف‌نظر کرد و به این ترتیب رفتار ماده به صورت استکیمی کامل پلاستیک فرض می‌شود که این‌ها از معیار تنش‌های خاک و قانون جراحی هروری می‌کند.

روند کلی حق معادلات با استفاده از روش ارات احتمال توسط آقای کارا و همکارانش (9) انجام گرفته است.

شکل (1) هیئت به کار رفته در حالت و اخشن برای شرایط کرنش صفحه‌ای در صفحه xz متضاد را نشان می‌دهد. محور خم در جهت عرضی ورق است و راستای طولی همان راستای حکیمی است.

محورین فرضی می‌شود ورق دارای همسانگردی متفاوت محور حول محور y است.

- خشک

کرنش استکیمی با کرنش استولیستیک برای هر نقطه دلخواه در فراز کرنش به اندازه k0 و افزایش از محور خشکی ی بستگی دارد. به دلیل وجود شرایط کرنش صفحه‌ای در صفحه xz و نشان صفحه‌ای در صفحه xy و نشان صفحه‌ای در صفحه xz کرنش در صفحه ورق با توجه به قانون هوری به صورت زیر خواهد بود.

\[e_{z,x} = \frac{\sigma_{z,x} - \nu \sigma_{x,x}}{E} \]

(الف)

\[e_{x,z} = \frac{\sigma_{x,z} - \nu \sigma_{z,z}}{E} = 0 \]

(ب)

در صورتی که وفت انحنا چندان زیاد تیبد است این اثرات مهم و غیرقابل صرف‌نظر.

تان و همکارانش توزیع تنش‌های جاری و تنش پسماند را در خمش برای حالت کرنش صفحه‌ای بررسی کردند. در تحلیل آنها خمش به صورت خالص و با اندازه‌ای زیاد فرض شده است.[7]

احتمال از روش اجزای محدود برای مشخص کردن تنش پسماند در خمش برای حالت کرنش صفحه‌ای استفاده کرد و به مدل مختلف را در پارامتری مقایسه کرد.[8]

برای پیش بینی دقیق تنش پسماند در ورودی که به صورت سرد نورد شدهاند، به سبب مدل بسته نیاز است.

از انجایی که پیش از فراز هنگامی که شکل دهی تظیب کرنش خمی، عضوی اعضا همچون بار و بسته کردن ورق حول کویل پیچ و هم‌سر از روش رخ می‌دهد. در مقاله‌های حاضر نتایج آنها

تأثیرات این گونه فراز هنگامی که به صورت کرنشی در محور y است

کارا و همکارانش یک مدل تحلیلی دقیق با نظر گرفتن شرایط خم خالص و کرنش صفحه‌ای برای فراز ارائه کرده، اما تاثیرات همان‌گونه ورق را که عمده‌اها بعد از نورد رخ می‌دهد در نظر گرفته‌اند.[9]

این مقاله مدل بسته‌ای را برای بیان تنش پسماند ارائه می‌ده. که در آن فراز خمی - و اخشن به صورت یک مسئله استولیستیک در شرایط کرنش صفحه‌ای و با این فرض که ماها به‌عکس‌وگردان و از معیار تنش‌های واقعی به قانون جراحی هروری تبدیل می‌کند مدل شده است. حل عدیدی به کمک

روش اجزای محدود به منظور مقایسه و بررسی صحبت حلال

شکل 1- مختصات در نظر گرفته شده برای حل تحلیلی

79

استقلال، سال 2، شماره 2، اسفند 1387 (ویرانمای: روشن‌های عهده در مهندسی)

\[
\begin{align*}
\sigma_{x,b} &= \pm \frac{\omega_b \gamma}{\sqrt{1 - R \omega_b^2 + \omega_b^2}} \quad (8) \\
\end{align*}
\]

که در آن \(E \) مدل و استاتیکی، \(e_{z,b} \) و \(\sigma_{x,b} \) تنش در یک دریافت \(e_{z,b} \) و \(\sigma_{x,b} \) را به صورت نسبت نسبت

\[
\frac{dR}{b,xb,z} = \pm \frac{2}{1 + R} \frac{\sigma_{x,b} \sigma_{z,b} + \sigma_{z,b}^2}{Y^2} \quad (2)
\]

که در آن \(Y \) تنش در یک دریافت \(e_{z,b} \) و \(\sigma_{x,b} \) را به صورت نسبت نسبت

\[
\frac{dR}{b,xb,z} = \pm \frac{2}{1 + R} \frac{\sigma_{x,b} \sigma_{z,b} + \sigma_{z,b}^2}{Y^2} \quad (2)
\]

که در آن \(Y \) تنش در یک دریافت \(e_{z,b} \) و \(\sigma_{x,b} \) را به صورت نسبت نسبت

\[
\frac{dR}{b,xb,z} = \pm \frac{2}{1 + R} \frac{\sigma_{x,b} \sigma_{z,b} + \sigma_{z,b}^2}{Y^2} \quad (2)
\]

که در آن \(Y \) تنش در یک دریافت \(e_{z,b} \) و \(\sigma_{x,b} \) را به صورت نسبت نسبت

\[
\frac{dR}{b,xb,z} = \pm \frac{2}{1 + R} \frac{\sigma_{x,b} \sigma_{z,b} + \sigma_{z,b}^2}{Y^2} \quad (2)
\]

که در آن \(Y \) تنش در یک دریافت \(e_{z,b} \) و \(\sigma_{x,b} \) را به صورت نسبت نسبت

\[
\frac{dR}{b,xb,z} = \pm \frac{2}{1 + R} \frac{\sigma_{x,b} \sigma_{z,b} + \sigma_{z,b}^2}{Y^2} \quad (2)
\]

که در آن \(Y \) تنش در یک دریافت \(e_{z,b} \) و \(\sigma_{x,b} \) را به صورت نسبت نسبت

\[
\frac{dR}{b,xb,z} = \pm \frac{2}{1 + R} \frac{\sigma_{x,b} \sigma_{z,b} + \sigma_{z,b}^2}{Y^2} \quad (2)
\]

که در آن \(Y \) تنش در یک دریافت \(e_{z,b} \) و \(\sigma_{x,b} \) را به صورت نسبت نسبت

\[
\frac{dR}{b,xb,z} = \pm \frac{2}{1 + R} \frac{\sigma_{x,b} \sigma_{z,b} + \sigma_{z,b}^2}{Y^2} \quad (2)
\]
حال می‌توان یا دانست انتخاب معلوم کننده

به یک توجه به معادله

(21)

نسبت نیش

را در هر نقطه

یک مقدار مشخص

کرد. در ضمن یک مقدار حدی وجود دارد که در آن

سطح ورق شروع به وارد شدن به ناحیه پلاتیک می‌کند. این

مقدار با چاگدازی معادله (36-ب) در معادله (36) در معادله (27)

و با نظر به انگهک 2

به دست می‌آید

\[e_{z,b} = k_{BY} \left(\frac{2Y}{1 - v^2} \right)^{1/2} \]

(22)

همانطور که دیدیم می‌شود مقدار

\[k_{BY} = k_{BY} \] به خواص ماده

بسیگی دارد. زمانی که خم کردن پشتیبانی به

رشد تنش پسمانده در انگهکی کل فرایند شمش-اخمش، می‌شود.

3-2-اخشن

فرض می‌شود همتراسازی در ان و اخشن قبل از هرگونه

tیغی شکل اضافی و توسط همان انتخاب مرحله اما در

جهت عكس انجام می‌شود. در نتیجه

\[k_u = -k_b \]

(23)

بعد از مرحله واخشن، نش نهایی با جمع کردن نتیجه

مرحله‌ای خامش و واخشن به دست می‌آید

\[\sigma_{z,r} = \sigma_{z,b} + \sigma_{z,u} \] (الف)

\[\sigma_{x,r} = \sigma_{x,b} + \sigma_{x,u} \] (ب)

تا زمانی که انتخاب مکوس به حد بحرانی برسد و این بار

موجب تسلم مکوس ماده اینبار در جهت عكس شود، نش مرحله

و اخشن (پار برداری) استیک بوده و در روابط زیر حاصل

خواهد شد

\[\sigma_{z,u} = \frac{E}{1 - v^2} k_u y \] (الف)

\[\sigma_{x,u} = \frac{E v}{1 - v^2} k_u y \] (ب)

برای منش یک کردن شروع تسلم مکوس می‌توان حکاکی

را تعیین کرد که بعد از آن نش مرحله واخشن به حد

تسخیم می‌رسد. اگر تسلم در اثر واخشن رخ دهد، نش کلی از

از طرف دیگر با مشتق‌گیری از روابط (8-الف) و (5) به ترتیب

خواهایم داشت

\[\sigma_{z,b} = \frac{Y}{2 \left[1 \right]} \]

\[\sigma_{x,b} = \frac{Y}{2 \left[1 \right]} \]

(16)

(17)

(18)

جاگدازی معادلات (8) و (16) در معادله (17) معادله زیر را

نتیجه می‌دهد

\[\sigma_{x,b} = \frac{Y}{2 \left[1 \right]} \]

\[\sigma_{z,b} = \frac{Y}{2 \left[1 \right]} \]

(19)

حال می‌توان معادلات (16) و (18) را در معادله (19)

قرار داد و معادله زیر را بدست آورد

\[\sigma_{z,b} = \frac{Y}{2 \left[1 \right]} \]

\[\sigma_{x,b} = \frac{Y}{2 \left[1 \right]} \]

(20)

با قرار دادن معادلات (36-ج) و (36-د) در معادله اخیر می‌توان به

معادله زیر رسید

\[|\sigma| = \frac{Y}{E_k b \sqrt{1 - v^2}} + \frac{Y}{E_k b \sqrt{1 - v^2}} \]

(21)

استقلالی، سال 22، شماره 2، اسفند 1386 (وبه‌عنوان: روش‌های عدیدی در مهندسی)
معادله هیل بیروی می‌کند که به صورت زیر خواهد بود

\[\sigma_{z,r}^2 = \left(\frac{2R}{(1+R)} \right) \sigma_{x,r} \sigma_{z,u} + \sigma_{z,r}^2 = Y^2 \] (۲۶)

را می‌توان با جاگذاری معادلات (۳)، (۵) و (۲۵) در معادله (۲۴) مشخص کرد

\[k_{u,Y} = -\frac{Y[1-v^2]}{E[1-v^2 + v^2]} \frac{2R - vR' + \omega_b (2v - R)}{[1-R' \omega_b + \omega_b^2]} \] (۲۷)

کرنش کلی در جهت طولی در هر نقطه و در شروع تسیم به شکل زیر خواهد بود

\[e_{z,u} = (k_b + k_{u,Y})y \] (۲۸)

و نشانه‌های مربوط به آن نیز مشخص می‌شود

\[\sigma_{z,u} = \frac{E}{1-v^2} k_{u,Y} \] (۲۹-الف)

\[\sigma_{x,u} = \frac{vE}{1-v^2} k_{u,Y} \] (۲۹-ب)

و به همین ترتیب می‌توان نسبت نیست مربوط به آن را تعریف کرد

\[\omega_{u,Y} = \frac{\sigma_{x,u} + \sigma_{z,u}}{\sigma_{z,u} + \sigma_{z,u}} \] (۳۰)

با به کار بردن معادلات (۳) و (۷) و (۷) می‌توان معادله (۳۰) را به صورت زیر نوشت

\[\omega_{u,Y} = \left(1 - v^2 \right) \frac{v_b - v(2R - 2v)}{R' - 2v \omega_b - [1 - v^2]} \] (۳۱)

در نتیجه برای

\[\sigma_{z,u} = -\frac{E}{1-v^2} k_{b} y \] (۳۲-الف)

\[\sigma_{x,u} = -\frac{vE}{1-v^2} k_{b} y \] (۳۲-ب)

و وقتی \(k_{b} > |k_{u,Y}| \) تسیم در جهت عکس رخ می‌دهد، تنش‌های نهایی بعد از اتمام واخمش به دست می‌آید

\[\sigma_{z,r} = \frac{Y}{\sqrt{[1-R' \omega_b + \omega_b^2]} + \sqrt{[R' \omega_b + \omega_b^2]}} \] (۳۳-الف)

\[\sigma_{x,r} = \frac{\omega_{u,Y}}{\sqrt{[1-R' \omega_b + \omega_b^2]}} \] (۳۳-ب)

و

\[\omega_{u,Y} = \frac{\sigma_{x,u} + \sigma_{z,u}}{\sigma_{z,u} + \sigma_{z,u}} \] (۳۰)

مانند معادله (۱۹) است، با این تفاوت که به دلیل آنکه ماهی در مرحله واخمش است لندس خروجی غیر کره است.

با انگرالگیری در سمت چپ معادله (۷۵) از کرنش \(e_{z,u} = \frac{\omega_{u,Y}}{E} \) به عناصر نقطه شروع انگرال تا کرنش نهایی \(e_{z,u} \) و همچنین انگرالگیری در سمت راست معادله مذکور از نسبت نش می‌توان (در شروع تسیم) تا نسبت نش \(e_{z,u} \) با کرنش نهایی خواهیم داشت

\[e_{z,r} - e_{z,u} = \frac{Y}{E} \left[\frac{\omega_{u,Y}}{R' - 2v} \right] \sqrt{\frac{[1-R' \omega_b + \omega_b^2]}{4 - R'^2}} \] (۳۶)

از آنجا که مرحله هم‌تراز سازی منجر به کرنش صفر \(e_{z,r} = 0 \) در انتها وارد خواهد شد، با جاگذاری معادله (۸) در معادله (۲۴) در مورد

در استقلال، سال ۶۲، شماره ۲، سال ۱۳۸۴ (وپژوهش: روشهای عدیدی در مهندسی)
المان نوع CPE4R که دو بعده و ۲ گرمی با خاصیت کرنش صفحه‌ای استفاده شد. همچنین انگرال گیری کلاه به‌نام کشی کل وکترل ساعت شیئ به‌کاربرده شد. در مرحله برای مدل کردن کل فرم آن تابع‌بود: مرحله سخت به صورت سخت خالص ورق مشاوربا شعاع انتحال ۱۵ میلی‌متر و مرحله واکنش شامل همرفت‌کننده که به صورت عکس مرحله قبل تا بازگشت به شرایط اولیه انجام شد.

برای اطمینان از صفحه‌های مانند مقطع ورق در انتحال آزاد و در هنگام بازکاری، تام گردا به حکمت گر (گره مینا) انتهای آزاد مؤقتی شده است. در مرحله سخت و واکنش توسط میزان کافی از جامدیتی و جرختی گرده می‌باشد رساند به انتحال کافی و سپس انتحال صادم‌الوازمی می‌شود. در این مدل‌یابی شرایط غیرخطی هر یک از مدل‌ها به نحوی اعمال ABAQUS را در نظر گرفته شده است. در مدل‌ها مکانیکی ذکر شده و شرایط الکتروی‌کامی با استفاده از معیار هیل و قانون جریان همراه برای مودال ناهاسانگی بررسی می‌کند. تعیین شده است. مدل اجزای محدود توزیع تنش پسماند را نشان می‌دهد که اینه شکل توزیع‌آن در مقاطع عمود بر طول یک‌سان است و به همین دلیل تنها توزیع تنش در مقطع انتحالی به عنوان مرجع بررسی شده است.

۲- بررسی تایید
نتایج حاصل از مدل‌سازی اجزای محدود با تغییر حل تحلیلی به رای ۲ (۲) مقیاس شده‌اند. در این شکل خطوط متوسط حل تحلیلی و نیم حل به‌کمک روش اجزای محدود را نشان می‌دهد. همان‌طور که مشاهده می‌شود توزیع تنش پسماند طولی و عرضی که توسط مرحله بینی صورت می‌گیرد به‌عنوان اختیار جویی دارند. نتایج در شکل (۲) همچنین نشان دهنده توزیع غربی در ناحیه ژئومتری است. برای‌برای عرض توزیع این روش مطالعات پیشین مطالب به‌ویژه توجه‌های جدیدی به تزیین جزئی از گیره‌شده توسط ABAQUS نشان می‌دهد که توزیع تنش پسماند در بهبود توزیع تنش پسماند در جهت فشار است. نظریه مدل‌سازی با تنش‌زا ویژه مطالب مقایسه‌ای که انجام شده و این مطالعات نهایی در شکل ورود به‌صورت تجزیه‌ی اندلاع کریگر شده است.
شکل ۳– مقایسه نتایج حاصل از حل تحلیلی و روش اجزای محدود در حالت $R = 2$

و سپس با داشتن این مقدار، توزیع نش در ضخامت به صورت خطی ثابت شد. همانطور که در دو تصویر بالایی، شکل (۲) دیده می‌شود نش در جهت طولی و عرضی از دو بخش الاستیک و پلاستیک تغییرات نش بر حسب فاصله از محور خشکی به صورت خطی است. نش پلاستیک با دور شدن از محور خشکی به صورت هموار افزایش می‌یابد. نش پلاستیک که می‌تواند برای شکل (۳) نش پلاستیک را بعد از اتصال و اکتشاف نشان می‌دهد. نش مرحله‌ای و اکتشاف نیز نظری نش خشکی از دو بخش الاستیک و پلاستیک تغییرات نش بر حسب فاصله از محور خشکی به صورت خطی است. نش پلاستیک با دور شدن از محور خشکی به صورت هموار افزایش می‌یابد. نش پلاستیک که می‌تواند برای شکل (۳) نش پلاستیک را بعد از اتصال و اکتشاف نشان می‌دهد. نش مرحله‌ای و اکتشاف نیز نظری نش خشکی از دو
نتیجه گیری
در این تحقیق جه تحلیل برای پیش‌بینی توزیع نضال پسماند پس از مواد خصوصی و اندازه‌گیری در شرایط کار، نسبت‌های خاصی و با خصوصی است. مدل اجرا شده در برای یکین منطقه با افزایش قرار نمود. نتایجی که توسط هر دو روش پیش‌بینی می‌شود با هم اندازه‌گیری خوبی دارند. نتایج هر دو روش نشان دهنده توزیع غیر خطی نضال پسماند در جهت ضخامت است. تاثیرات مقدار ر بر روی توزیع نضال بررسی و مشاهده شد که با افزایش مقدار ضخامت هسته‌ مرکزی و مقدارشناختی و عرضی به طور طبیعی افزایش می‌یابد.

* شکل ۲: تأثیر مقدار R بر توزیع نضال
* شکل ۳: تأثیر مقدار R بر توزیع نضال

می‌دهد. با افزایش مقدار R ضخامت هسته‌ مرکزی و همچنین مقدار نضال طولی و عرضی به طور محسوسی افزایش می‌یابد. به عنوان مثال با افزایش مقدار R از ۱ به ۲ بیشترین توزیع طولی حدود ۱۵% افزایش می‌یابد. اساما علت این رخداد این است که ماده‌های پسماند نسبت به سطح نیم‌سیم در ناحیه‌ای که ۰ < σx, σr < σs، دچار انقباض می‌شود. همچنین نیم‌سیم در جهت عکس در فاصله بیشتری از محور خصوصی و با مقدار بیشتر نضال طولی و عرضی رخ می‌دهد. که بیشترین شکل نضال پسماند می‌شود. نتایج در شکل (۴) نشان دهنده توزیع غیرخطی نضال پسماند در در همه مقدار R است.

85

