Simulation-Based Radar Detection Methods

M. Farzan Sabahi, M. Modarres Hashemi, and A. Sheikhi

Department of Electrical and Computer Engineering, Isfahan University of Technology
Faculty of Engineering, Shiraz University

Abstract: In this paper, radar detection based on Monte Carlo sampling is studied. Two detectors based on Importance Sampling are presented. In these detectors, called Particle Detector, the approximated likelihood ratio is calculated by Monte Carlo sampling. In the first detector, the unknown parameters are first estimated and are substituted in the likelihood ratio (like...
الفهرست علائم

<table>
<thead>
<tr>
<th>دانه‌های هدف</th>
<th>Auto Regressive (AR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>نسبت درستنمایی</td>
<td>Λ(γ)</td>
</tr>
<tr>
<td>شیفت فرکانسی نرمالیزه شده دایر هدف</td>
<td>Ω</td>
</tr>
<tr>
<td>توان نویز صفره</td>
<td>σ²</td>
</tr>
<tr>
<td>بردار پارامترهای مجهول</td>
<td>Θ</td>
</tr>
<tr>
<td>نمودن توزیع شده پارامتر مجهول</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>وزن نموده‌شده</td>
<td>w(i) و w'(</td>
</tr>
</tbody>
</table>

به‌دنبال نسبت درستنمایی به‌صورت زیر محاسبه می‌شود:

\[\Lambda(\gamma) = \frac{\int P(y|H_0, \theta_0) P(\theta_1|H_1) d\theta_1}{\int P(y|H_0, \theta_0) P(\theta_0|H_0) d\theta_0} \quad (2) \]

سپس از اکارسازی اغلب نیاز به تخمین پارامترهای نامعلوم با محاسبه انتگرالهای پیچیده است. بازی آکارسازی معیارهای مختلف بیان شده است. معیار عمومی که در نظرگرفته شده است آکارسازی در رادار استفاده می‌شود معمولاً پیروی از مقدار دریافتی از روي بردار دریافتی \(\gamma \) محاسبه می‌شود و با یک سطح آستانه مقایسه می‌شود. سطح آستانه \(\eta \) به گونه‌ای انتخاب می‌شود که احتمال هشدار سطح در یک حد مشخص ثابت باشد. آکارسازی که غلط این معیار به‌دست آمده باشد آکارسازی به‌نام می‌شود. روش است که در مقابل آکارسازهای مختلف، هر کدام که در پندار اکارسازی با یک می‌شود پن‌در نتایج پیش‌بینی داشته باشد عملکرد بهتری دارد. در حالی که کدام از فرض‌های ممکن است حاوی پارامترهای نامعلوم باشد. اگر بردار پارامترهای نامعلوم در این فرضیه را با ترکیب
نمونه برداری موت کارلو استفاده می‌شود. روش موت کارلو پیش از این در محاسبات انتگرال‌ها کارگرفته شده است. در این مراحلی برای کاربرد این روش در حل مسائل تخمین پارامتری نیازمند می‌باشد.

تخمین آماری پارامتری (تابیه‌ای از پارامتر) از دو دیدگاه قابل بررسی است. یکی دیدگاه کلاسیک که در آن پارامترها قطعی و نامعلوم فرض می‌شوند و دیگری دیدگاه بزی که در آن پارامتر مجهول، یک مفهوم تصادفی در نظر گرفته می‌شود که تحقیق از آن مورد نظر است. در حالی‌که این دیدگاه از اصلی‌ترین اطلاعات پیشینی به شکل ممکن تابع توزیع پیشین 1 در نظر گرفته می‌شود. این تابع توزیع ممکن است حاوی اطلاعات کمی بوده با اصلاح خالی از اطلاعات 2 باشد. مثال توزیع پیکوکاکسین که در این مقاله به دلیل وجود جمله p(y) در مخرج معادلات (3) به دست آمده تخمینی توزیع پیشین اغلب کار مشکلی است. با توجه به معادلات:

\[p(y) = \int p(y|x)p(x|\theta) \, dx \] (4)

برای محاسبه \(p(y) \) به ویژه اگر تعداد پارامترها زیاد باشد. باید انتگرال باید با استفاده از ابزار مختلفی انجام شود. جمله \(p(y|x) \) در مقاله کاربردی همگونی‌ها می‌شود و آن را با توجه به معادلات (3) به عنوان نشان می‌دهم.

\[p(y) = p(y|x)p(x|\theta) \] (3)

به ویژه اگر تعداد پارامترها زیاد باشد، باید انتگرال باید با استفاده از ابزار مختلفی انجام شود. جمله \(p(y|x) \) در مقاله کاربردی همگونی‌ها می‌شود و آن را با توجه به معادلات (3) به عنوان نشان می‌دهم.

هر جمله به دست آمده توزیع پیشین کار مشکلی است و لی اگر به طریقی بتوان نمونه‌های مستقل 0 اُت توزیع پیشین توزیع پیشین نامعلوم تحت پاسخی‌های \(H_1 \) و \(H_0 \) جایگزین مقدار

واقع آنها شده و منطقه با فاصله معکوس آنها (1) محاسبه می‌شود. از معکوس این روش می‌توان به نوشاندن میانگین دقیق نظره در درستی نتیجه تخمین ML به‌صورت تحلیلی در حالت کلی و برخورد کردن با نمودار پارامترها به‌صورت پارامترهای قطعی اشکال دارد. به عبارت دیگر، چنانچه اطلاعات پیشینی در مورد پارامترهای نامعلوم موجود باشد استفاده می‌کند.

برای محاسبه (2) می‌توان به تقریب صورت و مخرج معادله

مزی اقدام کرد. در این روش که تابع ناپایداری که انتگرال آنها شناخته شده است جایگزین

\(p(y|x)p(x|\theta) \) به‌دست می‌آید. بی‌تهیه است که می‌توان

بودن تقریب مناسب به‌ویژه وقتی که تعداد پارامترها زیاد است مورد ترکیب است. مسائل متعددی وجود دارد که روش‌های فوق قابل اعمال به

آن نیست. یک راه حل عمومی در این موارد استفاده از روش‌های

CALR 1 2 3 که در آن \(\beta \) بردار مشاهده و

درستی‌سازی داده‌های است. نظیر به بیان می‌کند که تمامی اطلاعات ممکن در مورد \(\theta \) در \(p(y|x)p(x|\theta) \) موجود است. این توزیع

پسین می‌توان در سایر تحلیل‌ها استفاده کرد. مناسب‌سازی به دلیل وجود جمله p(y) در مخرج معادلات (3) به دست آمده تخمینی توزیع پیشین اغلب کار مشکلی است. با توجه به معادلات:

\[p(y) = \int p(y|x)p(x|\theta) \, dx \] (4)

برای محاسبه \(p(y) \) به ویژه اگر تعداد پارامترها زیاد باشد. باید انتگرال باید با استفاده از ابزار مختلفی انجام شود. جمله \(p(y|x) \) در مقاله کاربردی همگونی‌ها می‌شود و آن را با توجه به معادلات (3) به عنوان نشان می‌دهم.

\[p(y) = \int p(y|x)p(x|\theta) \, dx \] (3)

برای محاسبه \(p(y) \) به ویژه اگر تعداد پارامترها زیاد باشد. باید انتگرال باید با استفاده از ابزار مختلفی انجام شود. جمله \(p(y|x) \) در مقاله کاربردی همگونی‌ها می‌شود و آن را با توجه به معادلات (3) به عنوان نشان می‌دهم.

\[p(y) = \int p(y|x)p(x|\theta) \, dx \] (4)

برای محاسبه \(p(y) \) به ویژه اگر تعداد پارامترها زیاد باشد. باید انتگرال باید با استفاده از ابزار مختلفی انجام شود. جمله \(p(y|x) \) در مقاله کاربردی همگونی‌ها می‌شود و آن را با توجه به معادلات (3) به عنوان نشان می‌دهم.

\[p(y) = \int p(y|x)p(x|\theta) \, dx \] (3)

برای محاسبه \(p(y) \) به ویژه اگر تعداد پارامترها زیاد باشد. باید انتگرال باید با استفاده از ابزار مختلفی انجام شود. جمله \(p(y|x) \) در مقاله کاربردی همگونی‌ها می‌شود و آن را با توجه به معادلات (3) به عنوان نشان می‌دهم.

\[p(y) = \int p(y|x)p(x|\theta) \, dx \] (4)

برای محاسبه \(p(y) \) به ویژه اگر تعداد پارامترها زیاد باشد. باید انتگرال باید با استفاده از ابزار مختلفی انجام شود. جمله \(p(y|x) \) در مقاله کاربردی همگونی‌ها می‌شود و آن را با توجه به معادلات (3) به عنوان نشان می‌دهم.

\[p(y) = \int p(y|x)p(x|\theta) \, dx \] (3)
شبیه‌تر باشید کارایی روش نمونه برداری اهمیتی بیشتر خواهد داشت. به همین دلیل می‌توان به جای انتخاب یک \(q(i) \) ثابت، دسته‌ای از توزیع تولید را در نظر گرفت و در طی تکرارهای متواتری سعی در به‌کارگیری تقریب نمونه کارولی به‌دست آمده از نمونه‌ها کرد. بنابراین، برای مشخص‌کردن توزیع جدید توزیع‌های هفته وارد جعبه‌های تقریب مورد نظر به روز می‌شوند. برای جایگزینی بیشتر این زمینه می‌توان \([14، 15] \) مراجعه کرد.

2-4 نمونه برداری اهمیتی ترتیبی روشهای مطرح شده تا کنون هنگامی نیاز به درست داشتن کل مشاهدات به‌صورت یکجا دارند. در بسیاری از مسائل تصادفی نیاز به توزیع متوازی در پایت مسیوند. در این مسائل انجام محاسبات به‌صورت ترتیبی سبب اصل سوءتفاوت خواهد بود. در ده‌های هفته‌های وسیعی در زمینه نمونه برداری اهمیتی ترتیبی شده است. نمونه برداری اهمیتی ترتیبی که با نام فیلترینگ ذرهای \(\text{FIN} \) شناخته می‌شود کاربرد وسیعی در جوامع برای نرم‌افزارهای صورت باره قابل توجهی می‌باشد. برای کیفیت‌های این که بتوان آن را به صورت یک قضیه حالت مدل کرد. در این مسائل "حالات" در طی دقیقاً زمانی تغییر می‌کند و با استفاده از مشاهدات که معمولاً آنها به تزیین می‌شود. به‌دلیل این مسئله عمومی، این روش کاربردهای دیگری در جوامع مختلف علمی اجتماعی، نمونه‌برداری، هواشناسی، مطالعات و... پیدا کرده است. در [14] مجموعه مقالات از این نظر در مورد روش فیلترینگ ذرهای جمع آوری شده است.

برقراری باشد:

\[p(\theta) > 0 \Rightarrow q(\theta) > 0 \tag{10} \]

این روش در [12] برای محاسبه انتگرال‌ها به‌کار گرفته شده است. در حقیقت معادله (9) را می‌توان به عنوان تعریف کرده که میانگین نتایج روز توزیع \(q(\theta) \) محاسبه شده است:

\[E_p [h(\theta)] = E_q [h(\theta) w(\theta)] = \frac{1}{N} \sum_{i=1}^{N} h(\theta(i)) w(\theta(i)) \tag{11} \]

در این معادله \(h(\theta) \) نمونه‌های تولید شده طبق توزیع \(q(\theta) \) هستند. به این روش نمونه برداری اهمیتی \(IS \) کشته می‌شود. می‌توان نشان داد که \(IS \) به آسان بیشتری از (پ) باشد.

2-3 نمونه برداری اهمیتی فرقی

هر چه تابع توزیع اهمیتی \(q(\theta) \) به تابع توزیع هدفی \(p(\theta) \) نزدیک‌تر است، معادله (12) را نتایجی بهتری دارد. در این حالت می‌توانیم وزن اهمیتی را تا حدی کیفیت محاسبه کنیم:

\[w(\theta) = \frac{p(y | \theta) p(\theta)}{q(\theta)} \times \frac{p(\theta) y}{q(\theta)} \tag{12} \]

و معادله (11) به شکل زیر اصلاح می‌شود:

\[E_p [h(\theta)] = \frac{1}{N} \sum_{i=1}^{N} h(\theta(i)) w(\theta(i)) = \frac{1}{N} \sum_{i=1}^{N} w(\theta(i)) \tag{14} \]

در این حالت می‌توان وزن‌های ترمالیزه شده را به شکل زیر تعیین نمود:

\[w(\theta(i)) = \frac{w(\theta(i))}{\sum_{i=1}^{N} w(\theta(i))} \tag{15} \]

2-3 نمونه برداری اهمیتی فرقی

برای محاسبه درستنمایی کناری در اختصار برای انتخاب اینکه داده‌های دریافتی طبق چه
3-1 روشهای مبتنی بر IS
بر مبانی روش IS نمونه‌هایی از یک تابع توزیع احتمالی تولید می‌گردد. اگر مدل مورد نظر θ به‌ویژه برای نتایج آنالیزهای زیست‌شناسی و به‌ویژه در زمینه‌های مختلف حیاتی، بهینه‌سازی توزیع پیشین و نتایج احتمالی توزیع در یک تابع توزیع احتمالی برابر با θ است تابع توزیع احتمالی نمونه‌گیری برشح اینهک تابع توزیع احتمالی بهینه انتخاب شد روش‌های مختلفی پیشنهاد شده است.

3-2 نمونه‌برداری ساده- نمونه‌برداری از توزیع پیشین درستنامی کاری یا می‌توان با میانگین گیری از مقدار درستنامی روی توزیع پیشین به‌دست آورده(22) می‌توان نوتشه:

$$m = E_p[p(y | \theta)] = \frac{1}{N} \sum_{i=1}^{N} p(y | \theta(i)) = m_{\text{prior}}$$

(19)

که می‌توان یک مقدار ساده از نمونه‌برداری پیشین است. این روش خیلی کارا و نتیجه قوی‌تر نمونه‌برداری توزیع پیشین ممکن است در ناحیه‌ای ساده که درستنامی مقداری از دارد و بنابراین با تبدیل تعداد زیادی نمونه استفاده شود.

3-3 نمونه‌برداری از توزیع پیشین با توابع احتمال دیگر
کارایی را می‌توان با انتخاب توابع احتمال دیگر به‌پایدار داد. اگر از توزیع $q(i)$ برای تولید $\theta(i)$ استفاده کنیم می‌توان نوتشه:

$$m = \frac{\sum_{i=1}^{N} w(i) p(y | \theta(i))}{\sum_{i=1}^{N} w(i)}$$

(20)

به دلیل اینکه تمام اطلاعاتی که در مورد θ موجود است در $p(y | \theta)$ نهفته است به نظر منطقی می‌رسد که در صورت امکان از توزیع پیشین برای تولید نمونه استفاده شود. بنابراین $p(y | \theta) = p(y | \theta(i)) \times \text{Likelihood} \times \text{Prior}$

$$\frac{\sum_{i=1}^{N} w(i) p(y | \theta(i))}{\sum_{i=1}^{N} w(i)} = \frac{\sum_{i=1}^{N} w(i) p(y | \theta(i))}{\sum_{i=1}^{N} w(i)} = \frac{\text{Likelihood} \times \text{Prior}}{\text{marginal Likelihood}}$$

(21)

 فقط در بعضی موارد خاص که نتایج تابع درستنامی نمایی بوده و توزیع پیشین نیز هم خانواده باشد می‌توان مقدار درستنامی کاری را که آن را m نامیده به صورت تحلیلی محاسبه کرد. برای شرایط جالبی به‌ویژه در موارد شدید آماری مقدار $\theta(i)$ می‌توان به روش لاپلاس (19) روش‌های مبتنی بر MCMC از کاربرد در ماشین‌های نمونه‌برداری احتمالی می‌کنیم که در نتایج پیشنهادی از آن استفاده شده است.
4- آشکار سازی ذرهای
به طور کلی از روش‌های موتین کارلو به دو صورت می‌توان در آمارگی استفاده کرد:
الف- تخمین پارامترهای مجهول و استفاده در نسبت (GLRT)
درستنمایی (مشابه با
ب- تخمین نسبت درستنمایی با استفاده از تقییق‌های
درستنمایی کناری و تقسیم آنها بر یکدیگر (مشابه با AALR)

به آشکار سازی که رو به رو به روش‌های فوق استفاده می‌کند اصطلاحاً آشکار سازی ذرهای گفته و آنها را به ترتیب PD1 و PD2 می‌نامیم. اکثر بردارهای کارایی برابردار
پارامترهای مجهول را
 medically. ببخشید این هم چنین ایجاد می‌تواند تولید نموده با تابع توزیع پسین کار مشکلی است بنابراین

می‌توان از روش نمونه برداری اهمیتی برای تولید نمونه‌های وزنی نیز استفاده کرد. حتی در این حالت نیز

محاسبه وزنه‌های به دنبال و استنگی آنها به

مشکل است اما خوش‌خیابان با توجه به معادلات (9) و (10) دادن نمونه‌پذیری تا حدی به کارگیری می‌کند. مراحل آشکار سازی ذرهای را می‌توان به شکل زیر بیان کرد:

d: 1387
"استقلال، سال ۲۷، شماره ۱، شهریور ۱۳۸۷"
5-1 آشکارسازی هدف با دانه جمجمه در نویز سفید
گوسی و ارتباط مجهول
برای این مسئله آشکارسازی وجود دارد و به شکل GLRT زیر به دست می‌آید [2]

\[

t_f\frac{\chi^2(\nu \beta, \nu \alpha)}{\chi^2(\nu \beta, \nu_0 \beta)} > \eta
\]

(25)

که تعداد پالس‌های برگشت از هدف و \(p\) که ماتریس یکه
است و با تابع‌های میزان نتایج محاسبه‌ای با آن مقایسه کرد. در
این مسئله با آماره‌های نامعلوم در فرض \(H_1\) برای \(\alpha,...,\alpha\)
\(=\alpha(\sqrt{\beta})\) برای لایه \(n=\sigma^2\) و ارتباطات توی سفید
است و در این حالت نسبت سیگنال به نویز از معادله

\[\frac{\eta}{\sigma^2} + \alpha, PDI\]

به دست می‌آید. در روش PD1، مقدار SNR = \[\frac{\sum_{i=1}^{N} w(i) y(i)}{\sqrt{\sum_{i=1}^{N} w(i)^2 (y(i) - \mu_f)^2}}\]

(26)

\[\text{cov}(\theta) = \frac{\sum_{i=1}^{N} w(i) (y(i) - \mu_f)(y(i) - \mu_f)^T}{N-1}\]

\[\text{cov}(\theta) = \frac{\sum_{i=1}^{N} w(i) (y(i) - \mu_f)(y(i) - \mu_f)^T}{N-1}\]

و از تابع \((0,1)\) استفاده کرده و مجدداً به

\[\text{SNR} = \frac{\eta}{\sigma^2} + \alpha, PDI\]

مزه 2 می‌روم.

5-2 نتایج شبیه‌سازی
در شبیه‌سازی این بخش با دانه جمجمه مدل کلی
مسائل آشکارسازی راداری، فرصتی که هدف انتخاب
یکی از فرضیه‌های زیر است:

\[H_1: Y = \alpha s + n\]

(32)

\[H_0: Y = n\]

بردار \(s\) شامل \(p\) پالس‌پذیرکشی از هدف به صورت

\[\text{ردیاب} Y = y(1) \ldots y(p)\]

یک از پالس‌های دریافتی و \(\alpha\) دانه سیگنال پذیرش شده هدف

\[\alpha = \text{نیت مطابق معادله زیر تعریف می‌شود:}

\[S = [I \ e^j\Omega \ldots e^j(p-1)\Omega] T\]

(33)

\[\text{که در آن} \Omega \text{ مشابه فرکانس دایر نرم‌افزارهای شده هدف است. در}

\[\text{حالات کلی، کلیه متفاوت‌ها می‌توانند مختلف باشند.}

\[14877, T, 1, \text{شهریور}\]
برای اینکه مقایسه روش در این حالت تقریباً یکسان است، در 2 عددی مقدار روش GLRT با PD2، SNR = 10 dB و p = 20، N = 100 شده است که در این حالت نیز تابع مشابه است. مقادیر باند سازی مشابه تابع قبل است. لازم به ذکر است که در این شکلها نسبت و برایر 10 dB SNR نسبت و برایر 10 dB نیستند.
GLRT بهره محسوسی دارد. دلیل افت عملکرد این GLRT است که در تعدادهای کم مشاهده، تخمین پارامترها از روش ML تخمین مناسبی نخواهد بود. در این شرایط سازی $N=100$ و مقادیر بقیه پارامترهای شیب سازی مشابه قسمت قبل است. مسائل فوق را با فرض اینکه دامنه هدف نیز مطابق با یکی است. بدین منظور، با تغییر α, σ^2 را نیز تغییر داده‌ایم تا مقیاس ثابت بماند.

با توجه به اینکه تعداد بال‌سختی در عملکرد روش تخمین موتور است مسئله فوق را برای 5 پالس دریافتی در نظر می‌گیریم. همان‌گونه که در شکل (5) مشاهده می‌شود کارایی این روش‌ها و بهبودی روش PD2 در مقایسه با

شکل 3- مقاوم بودن آشکار ساز PD1 نسبت به تغییر پارامترها

شکل 4- مقاوم بودن آشکار ساز PD2 نسبت به تغییر پارامترها

استقلال، سال ۱۳۸۶، شماره ۱، شهريور
شکل 5- مقایسه آشکارساز GLRT با PD1 و PD2 در نویز سفید با واریانس مجهول در تعداد پالس کم

آشکارسازی هدف با دامنه مجهول در نویز

در کاربردهای راداری در بسیاری از موارد نمی‌توان کلاس را به‌صورت گوسی سفید مدل کرد. به عبارت دیگر انداده‌گیری واقعی نشان دهنده عدم تصویب با مدل سفید گوسی است. پرای به دست آوردن مدل مناسب کلاس تحقیقات گسترده‌ای انجام شده و مدل‌های مختلفی برای مشاهده شده است. از جمله مهمترین این مدل‌ها، مدل GLRT گوسی است [24-27]. در این مدل بردار تداخل مربوط به کلاس (n) به‌صورت زیر در نظر گرفته می‌شود:

\[
\boldsymbol{n} = (n_1 \ldots n_p)^T
\]

\[
n_k = \sum_{j=1}^{M} a_j n_{k-j} + w_k
\]

که \(w_k\) گوسی مختلط با میانگین صفر و واریانس \(\sigma_w^2\). برای این است. در این حالت در بازه (28) است. GLRT برای این مدل به است. (1) لازم به یاد آوری است که در توزیع پیشین واقعی (مدل‌های سورلینگ) تغییر می‌کند. بررسی کردم. به این منظور فرض می‌کنیم \(\alpha\) طبق یک توزیع گوسی مختلط با میانگین صفر و واریانس \(\sigma^2\) تولید نشده (مدل سورلینگ). برای اعمال روش تحلیلی می‌توان ترکیبی از روشهای GLRT را به کار گرفت. در مورد دقت در فرض \(H_1\) ابتدا با GLRT و پس در یک مدل مLEM می‌توان \(\alpha\) تخمین از رابطه

\[
f(y | H_1) = \int f(y | \alpha, \sigma^2_{ML}, H_1) d\alpha
\]

محاسبه کنیم. در فرض \(H_0\) نیز \(f(y | H_0) = f(y | \sigma^2_{ML}, H_1)\) با استفاده از محاسبه یک مشابه می‌کنیم. محاسبه (6) محاسبه (5) منجر به محاسبه یک انتگرال پیچیده از بهتر می‌شود که می‌توان آن را با روشهای عادی حل کرد. به دلیل اینکه حل تحلیلی این مدل در دست نیست، در اینجا نیز نتایج را با مقایسه می‌کنیم. انتظار می‌رود که در نتیجه از اطلاعات پیشین در مورد توزیع \(\alpha\) اطمینان بهره‌وری داشته باشند. شکل (6) این حساسیت را نشان می‌کند. سایر پارامترهای طراحی آشکارسازی از پارامترهای دیگر مشابه بوده و شیب‌هایی مشابه شکل (5) است.
نتایج تحقیقات نشان می‌دهد که در این حالت نیز متمایز با
حالت نیز سیف، با تغییر مقادیر α, β عمکاره کورتیوم
ARGLR تابی می‌باشد [23] به عبارت دیگر کورتیوم
ARGLR نسبت به تغییر پارامترها مثبت است.

یکی از روشهای طراحی آشکارساز طراحی بر اساس
بینتین حالت هدف، یعنی کوچک‌ترین هدف ممکن است.
در این حالت می‌توان دانه هدف یعنی [6] را معلوم و منظور با
کوچک‌ترین هدف در نظر گرفته و به این ترتیب چهار در
نقطه واحد مقیاس α برگزار است. من نیازی به کارآیی
آشکارساز اطمینان داشت. افزایش مقادیر α معنی است
اموال روش GLRT به راحتی امتیازی داده نمی‌شود زیرا که
یافته پارامترها در دست نیست ولی در روش آشکارسازی
ML به علت اطلاعات می‌توان استفاده کرد. در حقیقت در
آشکارساز برای تولید مقادیر α در این مسئله فقط کافی
است نمودهای فاز آن را تولید کنیم. باید تا ترتیب می‌توان
آشکار ساز بهره محاسبه α را به دست آورد. به دنبال آشکار
بهینه محل معمولاً با شرط $0 < |\alpha| < 1$
[6] می‌تواند و در این
منطقه نیز جوی آشکارساز برای کوچک‌ترین هدف بهینه
می‌شود آن را بهینه محلی می‌نامیم. اندازه‌گیری α را در نتیجه

کوتاهی از نظر کوتاه مدت برای کلاستر در [28 و 29]
به‌طور کامل توجه کاربری روشن ARGLR بر روی کلاستر دیگر توجه
آشکار ساز کلی [30] و آشکارساز IBDA [24 و 31]
نشان داده است و بنابراین در ادامه نیز به مقایسه نتایج با
نحوه پرداخت. شکل‌ها را (7) و (8) نمایی مقایسه ARGLR
به دست آمده از روش GLRT و PD ROC

100% داده مستقل به دست آمده است را نشان می‌دهد.

پارامترهای شبیه سازی عبارت‌اند از:

مقدار SNR $= \text{SNR} = 10 \text{dB}$ و $\alpha_{\text{min}} = 0.3$ و $\alpha_{\text{max}} = 2$
$\text{SNR} = 10 \text{dB}$ و $\alpha_{\text{min}} = 0.3$ و $\alpha_{\text{max}} = 2$
$\text{SNR} = 10 \text{dB}$ و $\alpha_{\text{min}} = 0.3$ و $\alpha_{\text{max}} = 2$

می‌تواند. به دنبال ترتیب برای رسیدن به SNR مطلوب با استفاده از
واضح مقادیر α در شیب‌هایی تنظیم می‌کنیم.

همان‌گونه که دیده می‌شود تاریخ پیساب به هم نزدیک‌کنند. در
ساختار آشکارساز در پایان تویید نمونه‌های a از توزیع
یکنواخت داخل دایره واحد (به منظور پایداری) و برای تویید
نمونه‌های a از توزیع یکنواخت در بازه $[0,0.6]$ استفاده شده
است. تویید نمونه‌های دامنه نیز با توجه به α

روشی که قبلاً گفته شد انجام می‌گردد.

اضافه، سال 27، شماره 1، شهریور 1387

28
کردن اجر مرتب تصادفی ضرب شونده که توزیع گاما دارد را با: \(q - 1 \) نشان دهنده فاصله میانگین واحد بایتی می‌توان نوشته.

\[
p(t) = \frac{v^v}{\Gamma(v)} t^{v-1} e^{-vt} \quad t > 0
\]

همچنین داریم:

\[
p(y | z, \sigma_w^2, \alpha, H_1) = \int p(y | z, \sigma_w^2, \alpha, t, H_1) p(t | z, \sigma_w^2, \alpha, H_1) dt
\]

با توجه به اینکه \(t \) از ضرایب AR و هدف مستقل است می‌توان گفت: \(p(t | z, \sigma_w^2, \alpha, H_1) = p(t | H_1) \).

\[
p(y | z, \sigma_w^2, \alpha, H_1)
\]

\[
= \int p(y | z, \sigma_w^2, \alpha, t, H_1) p(t | H_1) dt
\]

\[
= \frac{2v^2}{\pi^2 \text{det}(R_N)^v} k_{v-p}(\sqrt{4v})
\]

که در آن \(v \) پارامتر شکل توزیع \(R_N \) و \(k \) ماتریس کواریانس \(R_N \) به‌دست آمده با توجه به \(z, \sigma_w^2, \alpha \) نتایج بعدی تصادفی وظیفه می‌شوند.

\[
\text{SNR} = 10 \text{ dB} \quad p = 20 \quad N = 500 \quad \text{doppler} = 1 \text{ rad/s}
\]

شکل 9- مقایسه آشکار ساز PD1 با کواریانس مجهول

در حالت که دامنه محدود است (LOD)
1. importance sampling
2. particle detector
3. likelihood ratio
4. averaged likelihood ratio
5. generalized likelihood ratio test
6. prior information
7. approximated ALR
8. constrained GLR
9. constrained ALR
10. expectation maximization
11. prior
12. non informative
13. likelihood
14. posterior distribution
15. normalizing constant
16. marginal likelihood
17. Lazzarini
18. Metropolis
19. Markov chain Monte Carlo
20. irreducibility
21. aperiodic
22. Metropolis – Hasting
23. Gibbs sampler
24. importance sampling
25. importance weight
26. particle filtering

27. real time
28. posterior odds
29. Bayes factor
30. hypothesis testing
31. conjugate prior
32. posterior
33. Kelly
34. innovation based detection algorithm
35. locally optimum detector (LOD)
36. spherically invariant random process

REFERENCES

References in Persian

1. تایبی، م. م.، *آشنایی با اهداف و راهبردهای مدلسازی اقتصادی و نرگسیسیون ماتریسی*، نامه دکترای دانشگاه تربیت مدرس، 1372.
2. Lazzarini
3. Metropolis
4. Markov chain Monte Carlo
5. Hastings, W. K.
6. Geman S.
7. Kloek, T.
8. Biometrika
9. Skolnik, M. I.
10. Kay, S.M.
11. Nayebi, M. M
12. Liu, B.
13. Kress, R.
14. Andriu, C.
15. Metropolis, N.
16. Robert G. O.
17. Hastings, W. K.
18. Geman S.
19. Kloek, T.
20. Skolnik, M. I.
21. Kay, S.M.
22. Nayebi, M. M
23. Liu, B.
24. Kress, R.
25. Andriu, C.
26. Metropolis, N.
27. Robert G. O.
28. Hastings, W. K.
29. Geman S.
30. Kloek, T.
31. Skolnik, M. I.
32. Kay, S.M.
33. Nayebi, M. M
34. Liu, B.
35. Kress, R.
36. Andriu, C.
37. Metropolis, N.
38. Robert G. O.
39. Hastings, W. K.
40. Geman S.
41. Kloek, T.
42. Skolnik, M. I.
43. Kay, S.M.
44. Nayebi, M. M
45. Liu, B.
46. Kress, R.
47. Andriu, C.
48. Metropolis, N.
49. Robert G. O.
50. Hastings, W. K.
51. Geman S.
52. Kloek, T.
53. Skolnik, M. I.
54. Kay, S.M.
55. Nayebi, M. M
56. Liu, B.
57. Kress, R.
58. Andriu, C.
59. Metropolis, N.
60. Robert G. O.
61. Hastings, W. K.
62. Geman S.
63. Kloek, T.
64. Skolnik, M. I.
65. Kay, S.M.
66. Nayebi, M. M
67. Liu, B.
68. Kress, R.
69. Andriu, C.
70. Metropolis, N.
71. Robert G. O.
72. Hastings, W. K.
73. Geman S.
74. Kloek, T.
75. Skolnik, M. I.
76. Kay, S.M.
77. Nayebi, M. M
78. Liu, B.
79. Kress, R.
80. Andriu, C.
81. Metropolis, N.
82. Robert G. O.
83. Hastings, W. K.
84. Geman S.
85. Kloek, T.
86. Skolnik, M. I.
87. Kay, S.M.
88. Nayebi, M. M
89. Liu, B.
90. Kress, R.
91. Andriu, C.
92. Metropolis, N.
93. Robert G. O.
94. Hastings, W. K.
95. Geman S.
96. Kloek, T.

