Application of Fuzzy Decision-Making to Facility Layout Planning

H.R.Khazaki, A.Shahandeh, and S.R. Hejazi
Department of Industrial & Systems Engineering, Isfahan University of Technology

Abstract: This research proposes a vigorous methodology based on the fuzzy set theory to improve the facility layout process. Using natural language, the fuzzy set theory is an appropriate tool for controlling complex systems such as facility planning. The closeness rating between departments in a plant depends on qualitative and quantitative factors. Some of these factors may have a greater effect on the closeness rating. Thus, analytical hierarchy process (AHP) is used to find the weight of these factors. In this paper, a computer program, called FDARC, is developed to generate quantitative activity relationship charts. These charts are used by FLAYOUT to develop the layouts. The procedure is compared with two other recent methods. Computational results are used to demonstrate the effectiveness and efficiency of the method proposed.

Keywords: Facility layout, Fuzzy decision-making, Analytical hierarchy process.
مقدمه

مسئله گانمایی یکی از مسائل مهم برنامه‌ریزی تسهیلات است. یک گانمایی خوب باعث افزایش کارایی عملیات، امکان و استفاده موثر از منابع انسانی، تجهیزات، فضا و انرژی شده کاملاً حمل و نقل مواد و دوری از اسناد حركات را در پی خواهد داشت [1 و 2]. روش‌های گانمایی با استفاده از مجموعه‌ای از داده‌ها درباره محققی که باعث تولید شود، شروع می‌شود. این داده‌ها مانند جدول از - به‌کمک هستند یا مانند جدول رابطه فعالیت‌ها گرفته‌اند [3]. بعضی از گروه‌ها فقط داده‌های گانمایی را پذیرفته‌اند.

حالی که قبیل یا داده‌های کمی کار می‌کنند، نمونه‌سازی در نامناسب‌های مقدار کمی و یکی باعث کاهش کیفیت طرح استراتژی‌های شود. همچنین، در بسیاری از مواقع مکتب که نمونه‌های این مقادیر کمی و یکی باعث طرح از نظریه مجموعه‌های فازی در برنامه‌ریزی تسهیلات باعث می‌شود که برنامه‌ها کمی و کیفی موثر بر گانمایی حصول کمی رابطه فعالیت‌ها را به صورتی رضایت نمایند.

ویلهلم و همکاران [4] یک روش گانمایی برای مسئله گانمایی تسهیلات قبیل ساختارهای توزیعی فازی و ارتباطات فازی ارائه کرده‌اند. در این روش به هر بخش یک رابطه انتخاب برای استراتژی در گانمایی اختصاص می‌پذیرد و گانمایی به‌کمک شاخص رضایتندی بین هر جفت از بخش‌ها استاندارد می‌شود.

یک روش گانمایی برای مسئله گانمایی تسهیلات شما، شبیه‌سازی‌های از یکی مقدماتی به کمی و کیفی ارگردار باعث ارتباطات تسهیلات، انتخاب و تعیین مقادیر نتایج عضوی برای شبیه‌سازی توزیعی و روش‌های ابزاری برای انتخاب و استراتژی تسهیلات و ارزیابی گانمایی‌ها ارائه‌کرده‌اند. رازوت و راکت [7] برای حالت گانمایی‌ها، یکی از گروه‌ها سازند گانمایی‌ها را ارائه کرده‌اند. در این روش واصله به عنوان یکی از میزان گانمایی‌ها در نظر گرفته شد.
هستند. نظریه مجموعه‌های فازی می‌تواند به صورت کمی با این ابهامات برخورد نماید و زمینه را برای استدلال انتخاب و توصیه گیری در شرایط عدم اطمینان فراهم آورد[19]. از تأثیرات زوج مربوط تشکیل شده است که جزئی از نظر را نشان داده و جزء دوم میزان عضویت آن عضو به مجموعه مورد نظر را می‌رساند. وقتی مجموعه مرجع X بک مجموعه منفی است، می‌توان مجموعه A = \{(x, \mu_A(x)) : x \in X \text{ به صورت } X \times \mathbb{R}^+ \} فازی A را به صورت بین نمود[19]. اجتماع و اشتراک دو مجموعه فازی جزء عملگر فازی‌ای نظیری مجموعه‌های فازی بوده و به صورت زیر تعریف می‌شوند:

\[
(A \cup B)(x) = \max \{A(x), B(x)\}
\]

\[
(A \cap B)(x) = \min \{A(x), B(x)\}
\]

اما این تعریف، نهایاً تعریف ممکن نیستند. تعریف‌های دیگر نیز برای اجتماع و اشتراک دو مجموعه فازی ارایا شده است که هر کدام با توجه به وزن‌گذاری دردست می‌آید، زمینه‌های کاردینالی و ریاضی‌ای بنا شده‌اند.

ورنگر با ترکیب عملگران max و min و

\[
(A \cup B)(x) = \max \{A(x), B(x)\}
\]

\[
(A \cap B)(x) = \min \{A(x), B(x)\}
\]

\[
(A \cup B)(x) = r \max \{A(x), B(x)\}
\]

\[
(A \cap B)(x) = r \min \{A(x), B(x)\}
\]

\[
A = \{(x, \mu_A(x)) : x \in X \text{ به صورت } X \times \mathbb{R}^+ \}
\]

به صورت بلای محاصره کشته و تابع هدف، به صورت حداکثر کردن هزینه حمل و نقل مواد (MHP) بین نهایت‌های تعریف‌های این است. برای این منظور یک برنامه رایانه‌ای به نام جایگزین (FLAYOUT) فازی بنا شده است.
3- فرموله بندی مسئله و روش
در روش‌های سنتی جامایی تسهیلات از جدول زیر به

فعلاً به برای توسعه جامایی استفاده می‌شود. جدول زیر به

فاعلاً به برای توسعه جامایی استفاده می‌شود. جدول زیر به

امام در این تصمیم وجود داشته است، هنگامی که کارشناسان

جامعه کار برای رسی جامایی را شروره می‌کنند. ابستی

نمونه‌گیری‌ها را که جامایی اگر باشد. تعداد همکاران در

نظر داشته باشد. به علت تعداد پیچیدگی و طبیعت مسئله این

فیزیک می‌کنند، ابستی است. مثلا برای نمونه‌گیری برای

مجموعه فیزیک، ابستی ماشینی از این جهت می‌باشد. (13)

همانطور که قبل گفته شد، یک سیستم تصمیم‌گیری فازی است

از چهار ترکیب اصلی با انواع‌های پایگاه داده، فازی کننده، موتور استاندارد و فازی کننده تکانه است، ابتدا لازم است که در رودهای این سیستم مشخص شده، بسی

مجمع‌های مرجع، فازی مجموعه و متقابلیت این پیام‌ها تعیین

و اینکه این پیام‌ها و یا به عبارت دیگر مسئله این مسائل تعیین می‌شود. برعکس از همه‌نیازهای عاملی (متریک‌های دوستانه) به همراه

مقدار زبانی استحکام پایه که توسط کارشناسان جامایی

مورد استفاده قرار می‌گیرند. عبارت از:

1- فازی کننده: وظیفه فازی کننده خواسته‌ها مقدار متریک‌های

کئنی و تبدیل آنها به یک از مقدار متریک‌های زبانی می‌باشد.

2- موتور استاندارد: مجموعه متریک‌هایی که در تعیین آنها

ازمتریک‌های زبانی استفاده می‌شود. هدف تعداد مقداری که به متریک زبانی

به‌جای ارزیابی اکسترات استفاده در استاندارد و قاعده‌های

پایگاه افزونه مدار این وارد به شکل اگز-آگز می‌باشد.

3- موتور استاندارد: پس از به‌دست آوردن کنترل کننده و

تکنیک‌های شناخته و موتور استاندارد باز است. نمایندگان و

رودهای فازی بر اساس قواعد پاپاراز این بخش نماینده

مناسب را اینجا نمایند.

4- غیر فازی کننده: خروجی فازی را به یک مقدار قطعی

استقلال، سال 2، شماره 6، شماره 1382، استقلال
نمایشگر (X) اختصاص یافته و توابع عضویت مثلثی طیق
شکل ۱) در نظر گرفته شده است [۱۲].

cدم به دیس پس از فازی کردن متغیرهای ورودی و متغیر خروجی، ایجاد سطح تصمیم گیری (فواین تصادفی) برای باشند. این فواین معمولاً به شکل اگر-انگه است. [۱۱] برای این مفاهیم عامل‌های ورودی برای تمام ارتباطات بین معادلات با استفاده از فاکتور تحلیل سلسله مراتبی (AHP) که اولینبار توسط ساتو (1991) پیشنهاد شد و منبیان آن مقایسه زوجی جزئیها با یکدیگر می‌باشد تعیین وزن می‌گردد. در این مقایسه‌ها تصمیم‌گیرندگان از قضاوت‌های شفاهی بر منبای جدول (1) استفاده می‌نمایند. اگرهمیت عامل ابر عامل یا یک عضویت مثلثی طیقی A*n*xi, n*xi ابر عامل یا یک عضویت مثلثی طیقی به صورت زیر تکل می‌شود:

\[A_{n*xi} = \begin{bmatrix} a_{ij} \end{bmatrix} \quad i, j = 1, 2, ..., n \]

شکل ۲- توابع عضویت مثلثی برای جریان نوار [۱۲] شکل ۳- توابع عضویت ذوزنقه‌ای برای ارتباط نظری [۱۲]

عمل‌های ورودی از تجربه و دانش افراد خبره، به نظر می‌رسد استفاده می‌شود. اگر نشان داده که تعیین توابع عضویت ذوزنقه‌ای به تجربه و سیاست‌های افراد خبره درباره اهمیت ارتباط‌ها را نشان می‌دهد (شیب ‘ند’ برای یک ارتباط مهم و شیب ‘پهن’ برای
ارتباط‌های با اهمیت کمتر) [۱۲].

در این تحقیق برای تعیین منافذ‌هایی از تجربه و دانش افراد خبره [۱۲] استفاده شده است. یعنی برای عامل‌های کلی (جراحان تجهیزات و جراحان پرسی) توابع عضویت مثلثی مانند شکل (۲) و برای عامل‌های که بیشتر جریان دارند (ارتباط نظری)، ارتباط اطلاعاتی و ارتباط محیطی) توابع عضویت ذوزنقه‌ای مانند شکل (۲) در نظر گرفته شده است. همان‌طور که ملاحظه می‌گردد، مجموعه مرجع برای تمامی این منافذ‌ها مجموعه [۱۰] می‌باشد.

برای متغیر خروجی برای نرخ‌های نزدیکی، مقادیر زیر مقدار ضرورت مطلق (A)، سیار مهم (E)، مهم (I)، معمولی (O) و غیرمهم (U).
در نظر گرفته و می‌تواند در تغییرات این متغیرها را مشخص کند. در نظر گرفته شده به صورت: خیلی بالا، بالا، متوسط، بالا و خیلی بالا.

جدول 1- مقدار ترجیحات برای ماظه‌های زوجی [8].

<table>
<thead>
<tr>
<th>ترکیبات (فضای مثلثی)</th>
<th>مقدار عددی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کامل مناسبی کامل مطلوب</td>
<td>9</td>
</tr>
<tr>
<td>اهمیت بالا مطلوبیت قوی</td>
<td>7</td>
</tr>
<tr>
<td>اهمیت بالا مطلوبیت قوی</td>
<td>5</td>
</tr>
<tr>
<td>کم معمولی کمی مطلوبیت</td>
<td>3</td>
</tr>
<tr>
<td>اهمیت بالا مطلوبیت یکسان</td>
<td>1</td>
</tr>
</tbody>
</table>
| اگر 8 9 و 10 میانگین خیلی بالا و وزن آن خیلی بالا باشد، آنگاه ترکیباتی A خواهند بود. اگر جریان مواد خیلی بالا و وزن آن خیلی بالا باشد، آنگاه ترکیباتی X خواهند بود. به همین ترتیب که فاکتور به طور تجربی تعبیر می‌شنود. این فاکتور برای عامل‌های پیشنهادی جریان، خیلی بالا، بالا و متوسط، جریان پرستی، ارتباط نظری، ارتباط اطلاعاتی و ارتباط محیطی در شکل (6) مشخص شده‌اند. همان طوریکه ملاحظه می‌شود فاکتور اگر- آنگاه شامل

\[n = 10 \]

تعداد عامل‌ها می‌باشد. در ماتریس فوق جهت محاسبه وزن هر عامل جدیدی روش پیشنهاد شده است. این روش‌ها عبارتند از:

1- روش حداصل مربوط به معمولی
2- روش حداصل مربوط به کمیتی
3- روش بردار ویژه
4- روش‌های تقیبی

روش‌های تقیبی دقت کمتری از معیار داشته و بدیل محسوب می‌شود. گزینه‌های نسبی، یکی از این روش‌های تقیبی است که در محاسبه وزن عامل‌ها در فرایند جایگزینی مورد استفاده قرار گرفته است. [11]

\[a < 1 \]

اصطلاحات سال ۱۳۸۷، شماره ۲، اسفند

\[36 \]
شکل 5- توابع عضویت برای عامل وزن [13]

شکل 6- قوانین اگر- آنگاه برای (الف) جریان مواج (MF) و عامل وزنی‌اش (ج) جریان تجهیزات (د) ارتباط اطلاعاتی (SL) و عامل وزنی‌اش (و) ارتباط محیطی (EL) و عامل وزنی‌اش [11].
جدول ۲- داده‌های ورودی بین ماهی‌ها برای مثال توضیحی

<table>
<thead>
<tr>
<th>عامل</th>
<th>عامل ۱</th>
<th>عامل ۲</th>
<th>عامل ۳</th>
<th>عامل ۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>ماهی‌ها</td>
<td>جریان مواد</td>
<td>ارتباط نظارتی</td>
<td>ارتباط محیطی</td>
<td>ارتباط اطلاعاتی</td>
</tr>
<tr>
<td>۱</td>
<td>۵</td>
<td>۲</td>
<td>۹</td>
<td>۱۰</td>
</tr>
<tr>
<td>۲</td>
<td>۸</td>
<td>۳</td>
<td>۸</td>
<td>۶</td>
</tr>
<tr>
<td>۳</td>
<td>۲</td>
<td>۷</td>
<td>۶</td>
<td>۸</td>
</tr>
<tr>
<td>۴</td>
<td>۱</td>
<td>۶</td>
<td>۸</td>
<td>۲</td>
</tr>
<tr>
<td>۵</td>
<td>۹</td>
<td>۱</td>
<td>۹</td>
<td>۵</td>
</tr>
<tr>
<td>۶</td>
<td>۵</td>
<td>۲</td>
<td>۷</td>
<td>۸</td>
</tr>
<tr>
<td>۷</td>
<td>۸</td>
<td>۳</td>
<td>۵</td>
<td>۵</td>
</tr>
<tr>
<td>۸</td>
<td>۵</td>
<td>۳</td>
<td>۲</td>
<td>۸</td>
</tr>
<tr>
<td>۹</td>
<td>۹</td>
<td>۱</td>
<td>۸</td>
<td>۵</td>
</tr>
<tr>
<td>۱۰</td>
<td>۵</td>
<td>۱</td>
<td>۹</td>
<td>۸</td>
</tr>
</tbody>
</table>

خروجی فازی در ادامه با استفاده از یکی از روش‌های غیرفازی کننده به اعداد نهایی (تره‌خزای تردیدیکی) تبدیل می‌شود. این مقادیر می‌توانند برای توصیع یک جانب‌هایی مورد استفاده قرار گیرند. جانبهای مربوط کارا بوده چرا که در توصیع آن عامل‌های زیادی با دچار لایه‌های مختلف در نظر گرفته شده است.

در ادامه با دوکیه مثلی، روش پیشنهادی توضیح داده شود.

۴- مثال توضیحی

فرض کنید ۵ ماهی و ۴ داردو. عامل‌های در نظر گرفته شده
جربون مواد، ارتباط نظارتی، ارتباط محیطی و ارتباط اطلاعاتی‌بوده که مقادیرشان در جدول (۲) نشان داده شده است. همان‌طور که ملاحظه می‌شود تعداد کل ارتباطات ۴۰ می‌باشد (۲۰×۲).

دو ورودی و یک خروجی می‌باشند. تعداد کل قوانین از فرمول زیر محاسبه می‌شود:

\[N = \sum_{i=1}^{m} n_i \prod_{j=1}^{l_i} L_i \]

که تعداد مجموعه قوانین، تعداد مقتدرها، مقادیر بینی مربوط به پارامترهای ورودی، ورودی و رشته مدل

پس از فازی کردن متقفرا و تشکیل پایگاه دانش، به موتور استنتاج نیاز است. موتور استنتاج ورودی فازی را اتخاذ و براساس قوانین اگر آنچه خروجی فازی مناسب را تولید می‌نماید. روشی که در این فاز می‌تواند به کار روده می‌شود روش مقدماتی است که به کمک یک مثال توضیح داده می‌شود.

استناد: سال ۵۷، شماره ۳، استناد ۱۳۸۷
جدول 3- شدت اهمیت عامل‌ها برای مثال توضیحی

<table>
<thead>
<tr>
<th>مانند</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/3</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/4</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/5</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/6</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/7</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/8</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
</tbody>
</table>

جدول 4- محاسبه وزن عامل‌های رورده بین مانندین 2 مثال توضیحی

<table>
<thead>
<tr>
<th>i/j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/3</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/4</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/5</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/6</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/7</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
<tr>
<td>1/8</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
<td>0/2</td>
<td>0/1</td>
</tr>
</tbody>
</table>

متعلق به تابع عضویت سیسپار پاپین (VL) بنی میزان عضویت 5/0/5 است (شکل 2). وزن این عامل ممکن با 5/0/0 محاسبه شده که متعلق به تابع عضویت سیسپار پاپین (VL) بنی میزان عضویت 5/0/5 است (شکل 5). این فرانک یک عامل عامل بعدی نیز به همین صورت تکرار می‌شود. قدم بعدی اعمال قوانین آغاز به تابع جدید به دست آمده از فاژی کردن متغیرهای می‌باشد. برای عامل 1 مربوط به دو مانندین 1 و 2 قوانین زیر از شکل 6 (جدول 4) انتخاب می‌شود.

قانون اول: اگر جریان مواد سیسپار پاپین و وزن آن بیشتر پاپین باشد، آنگاه نرخ نزدیکی X خواهد بود.

قانون دوم: اگر جریان مواد سیسپار پاپین و وزن آن پاپین باشد، آنگاه نرخ نزدیکی X خواهد بود.

قانون سوم: اگر جریان مواد پاپین و وزن آن سیسپار پاپین باشد، AHP با استفاده از روش شده تحلیلی و در جدول (2) شدت اهمیت عامل‌ها توصیف شده و در جدول (2) نشان داده شده است. برای مثال در مانندین 1 و 2 در نظر گرفتن، طراح عداد را به عنوان شدت اهمیت عامل 2 بر عامل 3 توصیف داده این. یک بنده معنی است که عامل 2 بر عامل 3 کمی مهم تر می‌باشد. محاسبات مربوط به برای این اینکه در جدول (2) نشان داده شده است. وزن عامل 1 برای با 3/0/0، وزن عامل 2 برای 2/0/2/2/1433، وزن عامل 4 برای 2/0/0 محاسبه گردیده است. وزن عامل‌ها برای تعاملات به همین صورت محاسبه شده و در جدول (5) نشان داده شده است.

قدم بعدی فاژی کردن متغیرهای می‌باشد. این فرانک برای دو مانندین 1 و 2 به صورت زیر انجام می‌شود: عامل 1 (جریان مواد) برای با 1 می‌باشد (جدول 2) این مقادیر

استقلال سال 27 شماره 2 اسفند 1387
جدول 5- وزن عامل‌ها برای تشخیص مدل توضیحی

<table>
<thead>
<tr>
<th>مدل‌شناسی</th>
<th>جریان مواد</th>
<th>ارتباط محیطی</th>
<th>ارتباط اطلاعاتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>0/244</td>
<td>0/138</td>
<td>0/128</td>
</tr>
<tr>
<td>1-3</td>
<td>0/252</td>
<td>0/195</td>
<td>0/162</td>
</tr>
<tr>
<td>1-4</td>
<td>0/217</td>
<td>0/172</td>
<td>0/149</td>
</tr>
<tr>
<td>1-5</td>
<td>0/293</td>
<td>0/275</td>
<td>0/251</td>
</tr>
<tr>
<td>2-3</td>
<td>0/243</td>
<td>0/217</td>
<td>0/269</td>
</tr>
<tr>
<td>2-4</td>
<td>0/229</td>
<td>0/229</td>
<td>0/229</td>
</tr>
<tr>
<td>2-5</td>
<td>0/288</td>
<td>0/284</td>
<td>0/284</td>
</tr>
<tr>
<td>3-4</td>
<td>0/269</td>
<td>0/284</td>
<td>0/284</td>
</tr>
<tr>
<td>3-5</td>
<td>0/239</td>
<td>0/239</td>
<td>0/239</td>
</tr>
<tr>
<td>3-6</td>
<td>0/217</td>
<td>0/217</td>
<td>0/217</td>
</tr>
<tr>
<td>4-5</td>
<td>0/188</td>
<td>0/188</td>
<td>0/188</td>
</tr>
</tbody>
</table>

آن‌گاه نرخ تردیدی X خواهند بود.

قانون جهار: آگر جریان مواد باپایین و وزن آن باپایین باشد. آگاه
نرخ تردیدی U خواهند بود.

میزان عضویت برای هر یک از فاونات فوق برای است بایا:

\[w_1 = \min \{0.5, 0.647\} = 0.5 \]
\[w_2 = \min \{0.5, 0.353\} = 0.353 \]
\[w_3 = \min \{0.5, 0.647\} = 0.5 \]
\[w_4 = \min \{0.5, 0.353\} = 0.353 \]

نتیجه سه‌قانون اول. نرخ تردیدی X به‌دست آمده، بنابراین میزان
عضویت نهایی برای نرخ تردیدی X برای است بایا:

\[\mu_X = \max \{w_1, w_2, w_3\} = \max \{0.5, 0.353, 0.5\} = 0.5 \]

همچنین میزان عضویت نرخ تردیدی U برای پایای X خواهند بود.

\[\mu_U = 0.353 \]

شکل (9) این خروجی فازی را به‌نهایت می‌دهد. در ادامه با
استفاده از روش غیرفرزی کننده COA می‌توانیم

\[R_{MF}^{12} = 1 \times 0.5 + 2 \times 0.353 \]
\[= 1.414 \]

که نرخ تردیدی بین دو مسیر (12) از نظر جریان مواد
می‌باشد. به‌همین صورت نرخ تردیدی بین دو مسیر 1 و 2 از
نظر ارتباط مدل (R_{SL}^{12}), ارتباط محیطی (R_{EL}^{12}) و ارتباط

استلال: سال 17، شماره 2، نمایندگی 1387
شکل 7- خروجی نهایی برنامه FDARC

شکل 8- خروجی فازی نرخ تبدیلی بین مسیرهای 1 و 2

وجود دارد یعنی اگر نرخ تبدیلی از بخش 1 به بخش 2 و از بخش 3 به بخش 1 باشد آنگاه $r_{ij} + r_{ji}$ نرخ تبدیلی متقابل خواهد بود.

2- بخش بعدی بخش است که جمع نرخ تبدیلی متقابل آن با اولین بخش انرخی شده از همه بیشتر باشد.

3- بخش سوم بخش است که حاصل جمع نرخ تبدیلی متقابل آن با تمام بخش‌ها که انتخاب شده‌اند ازدیچگر بخش‌هایی که شرایط انتخاب شده را دارند یا اولی نا کنون

را یاد کنید...

استقلال، سال 37, شماره 1, آبان 1387
شکل 9-20 حالت مختلق برای استقاض بست، در حول یک نقطه کاندید گوشه ای، به صورت شکل‌های غیرعمومی خواهد بود. در اینجا فرض می‌شود که بخش‌های به صورت مستطیل شکل یابد و ابعاد هر بخش از قبل مشخص شده است. همچنین نقاط ورود و خروج برای هر بخش در وسط اضلاع در نظر گرفته می‌شود.

این حالت برای مستطیل مانندی که کبیرتر بیشتری دارد زیرا که مشخصه را می‌توان به شکل مستطیل در نظر گرفت و ابعاد و نقاط ورود و خروج شان را به راحتی مشخص کرد. ناب‌‌هدف استفاده شده به صورت کمینه کردن هزینه حمل و نقل مواد در نظر گرفته شده است (پیوست).

اولین بخش به صورت افقی در مرکز نقاط قرار می‌گیرد. نقاط وسط و گوشه بخش‌ها با بخش‌های استقاض یافته به عنوان نقاط کاندید برای استقاض بخش بعدی در نظر گرفته می‌شود.
جدول ۶ - ابعاد و محل نقاط ورود و خروج ماسیها

<table>
<thead>
<tr>
<th></th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>طول (متر)</td>
<td>٤٠</td>
<td>٣٠</td>
<td>٢٠</td>
<td>١٠</td>
<td>٧٢</td>
</tr>
<tr>
<td>عرض (متر)</td>
<td>٣٠</td>
<td>٣٠</td>
<td>٣٠</td>
<td>٣٦</td>
<td>٢٢</td>
</tr>
<tr>
<td>نقطه ورود (م)</td>
<td>(٤٠،٠)</td>
<td>(٣٠،٠)</td>
<td>(٤٠،١٥)</td>
<td>(٦٠،٠)</td>
<td>(٢٤،٠)</td>
</tr>
<tr>
<td>نقطه خروج (م)</td>
<td>(٣٠،٠)</td>
<td>(٣٠،٠)</td>
<td>(٥٠،٣٠)</td>
<td>(٤٥،١٥)</td>
<td>(٤٥،٣٠)</td>
</tr>
</tbody>
</table>

гоشهای وسط این ده حالت را هم می‌توان ۱٨۶۰ درجه چرخان و ده حالت دیگر را به‌دست آورده و بنابراین، در حوالی یک نقطه گوشهای ۲۰ حالت مختلف استقرار وجود داشته‌اند. (شکل ۹) جستجوی اینکاری در همه نقاط کاندیدا باید در نظر گرفته شرط عدم همبستگی بین انجام می‌رسد و حالتی که کمترین مقدار تابع هدف را داشته باشد، انتخاب می‌شود.

۷-۱ قدمهای الگوریتم پیشنهادی برای استقرار بخش‌ها به صورت زیر خواهد بود:

۱. یافتن مسیر انتخاب بخش‌ها بر اساس روش انتخاب بخش‌ها.
۲. قرار دادن اولین بخش در مرکز نقطه باز به صورت اتفاقی.
۳. انتخاب بخش بعدی برای استقرار، طبق مسیر انتخاب بخش‌ها.
۴. انتخاب نقطه کاندید و کنترل موقعیت‌بنده آن در جدول وجود هست که موقعیت است به قدم بعدی دریاده و سپس به قدم ۷ بروید.
۵. قرار دادن اولین بخش در ناحیه یک نقطه حالت می‌گردد، در صورت‌های عدم همبستگی مقدار تابع هدف را محسوب کنید. سپس به

۷-۲ نتایج محاسباتی

در این بخش نتایج حاصل از روش پیشنهادی برای توسعه فاز جدول ابعاد تغییرپذیر با روش‌های گردبی و مایور [١٠] و FDARC به FDARC مقاله می‌گردد. برنامه‌ای به

۴۳

استقلال، سال ۳۷، شماره ۳، اسفند ۱۳۸۷
جدول 7- مقایسه نتایج حاصل از روش‌های مختلف برای مسئله با ۶ بخش.

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>میزان انتخاب</th>
<th>هزینه حمل و نقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کری</td>
<td>۴-۲-۳-۲-۴-۵</td>
<td>۵۸۰۵</td>
</tr>
<tr>
<td>دیویری</td>
<td>۴-۲-۳-۴-۵-۴</td>
<td>۳۳۹۸</td>
</tr>
<tr>
<td>پیشنهادی</td>
<td>۲-۴-۳-۲-۵-۴</td>
<td>۳۵۵۳</td>
</tr>
</tbody>
</table>

جدول 8- مقایسه نتایج حاصل از روش‌های مختلف برای مسئله با ۸ بخش.

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>میزان انتخاب</th>
<th>هزینه حمل و نقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کری</td>
<td>۴-۲-۳-۴-۵-۵-۶-۲</td>
<td>۱۳۵۳</td>
</tr>
<tr>
<td>دیویری</td>
<td>۲-۴-۳-۵-۴-۶-۵-۶</td>
<td>۱۵۰۸</td>
</tr>
<tr>
<td>پیشنهادی</td>
<td>۶-۲-۴-۵-۳-۶-۶-۲</td>
<td>۱۱۹۵</td>
</tr>
</tbody>
</table>

گرفته شده است. هر مسئله با استفاده از سه روش غیر فاکسی (FOM) و دو روش تولید و منابع (COA), اولین ماکریم (LOM) حالت و رشته اعمالی از جواب‌های حاصل از روش‌های دیویری و کری در جدول (۷) و (۸) مقایسه شده‌اند. همان‌طور که نشانه می‌شود جواب‌های به‌دست آمده از روش پیشنهادی رشد دیویری و روش کری بهتر است. در شکل (۱۱) مقدار تابع هدف به‌طور کلی نمودار می‌باشد. برای هریک از سه روش مورد نظر با ابعاد مختلف مقایسه شده و به‌هشته حاوی به توجه اطلاعات انتخاب شده است. مدت زمان مورد نیاز برای اجرای مشابه با اندازه‌گیری مختلف در جدول (۱۲) نشان داده است. کوتاه‌هانه زمان محاسبات کارایی روش را از این نظر نشان می‌دهد. به‌طور کلی می‌توان نتایج به‌دست آمده را به‌صورت زیر خلاصه نمود:

متر ۱۴۰۰۰۰ مگاهرز اجرا گردیدند.

روش کار به این صورت است که جدول کمی رابطه فعالیت‌های که از روش پیشنهادی، روش دیویری و روش کری به‌دست می‌آید را به برنامه FLAYOUT داده و مقدار تابع هدف (هزینه حمل و نقل مواد) به عنوان معيار ارزیابی در نظر گرفته می‌شود. مسئله با اندازه‌های ۱۵، ۱۲، ۱۰، ۸، ۶ و ۴ بخش در نظر گرفته شد. هم‌اکنون نتایج حاصل از این موارد جریان اطلاعات انتخابی و انتخاب محیطی به عنوان عامل‌های ورودی انتخاب شده‌اند. از آنگاه که پارامتر عملکرد ورودی بر پارامتر عملکرد ورودی به عنوان مقدار در پارامتر عملکدر بالا، ۴/۳-۱/۷ به عنوان مقادیر پارامتر عملکرد بالا، ۴/۳-۱/۷ به عنوان مقادیر
جدول 10- مقایسه نتایج حاصل از روش‌های مختلف برای مسیرهای با 15 بخش.

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>مسیر انتخاب</th>
<th>هزینه حمل ونقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانی</td>
<td>40-11-1-12-10-7-9-1-11-12-10-5-3-4-2-1-6-8-9</td>
<td>304746</td>
</tr>
<tr>
<td>دیوبنزی</td>
<td>40-11-1-12-10-7-9-1-11-12-10-5-3-4-2-1-6-8-9</td>
<td>305512</td>
</tr>
<tr>
<td>پیشنهادی</td>
<td>40-11-1-12-10-7-9-1-11-12-10-5-3-4-2-1-6-8-9</td>
<td>280679</td>
</tr>
</tbody>
</table>

جدول 11- مقایسه نتایج حاصل از روش‌های مختلف برای مسیرهای با 15 بخش.

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>مسیر انتخاب</th>
<th>هزینه حمل ونقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانی</td>
<td>40-11-1-12-10-7-9-1-11-12-10-5-3-4-2-1-6-8-9</td>
<td>702610</td>
</tr>
<tr>
<td>دیوبنزی</td>
<td>40-11-1-12-10-7-9-1-11-12-10-5-3-4-2-1-6-8-9</td>
<td>693242</td>
</tr>
<tr>
<td>پیشنهادی</td>
<td>40-11-1-12-10-7-9-1-11-12-10-5-3-4-2-1-6-8-9</td>
<td>682822</td>
</tr>
</tbody>
</table>

جدول 12- مقایسه نتایج حاصل از روش‌های مختلف برای مسیرهای با 20 بخش.

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>مسیر انتخاب</th>
<th>هزینه حمل ونقل</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانی</td>
<td>40-11-1-12-10-7-9-1-11-12-10-5-3-4-2-1-6-8-9</td>
<td>152779</td>
</tr>
<tr>
<td>دیوبنزی</td>
<td>40-11-1-12-10-7-9-1-11-12-10-5-3-4-2-1-6-8-9</td>
<td>154124</td>
</tr>
<tr>
<td>پیشنهادی</td>
<td>40-11-1-12-10-7-9-1-11-12-10-5-3-4-2-1-6-8-9</td>
<td>133441</td>
</tr>
</tbody>
</table>

شکل 11- مقایسین نتایج هدف محاسبه شده با استفاده از روش‌های مختلف.

جدول 13- متوسط زمان موردینی برنامه‌های FDARC و FLAYOUT برای مسایل مختلف بر حسب ثانیه.

<table>
<thead>
<tr>
<th>برنامه‌ها</th>
<th>6 بخش</th>
<th>8 بخش</th>
<th>10 بخش</th>
<th>12 بخش</th>
<th>15 بخش</th>
<th>20 بخش</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDARC</td>
<td>45/0</td>
<td>90/0</td>
<td>126/8</td>
<td>158/8</td>
<td>258/8</td>
<td>326/8</td>
</tr>
<tr>
<td>FLAYOUT</td>
<td>158/55</td>
<td>158/55</td>
<td>258/55</td>
<td>258/55</td>
<td>258/55</td>
<td>258/55</td>
</tr>
</tbody>
</table>

استناد: سال ۱۳۸۷ شماره ۲ استناد

45
8. تیجه‌گیری
در این پایان نامه یک سیستم توصیه‌گوی فازی برای توسعه جدول رابطه فعالیت‌ها طراحی گردید. برناوهایی‌ای حاصل از این روش (FDARC) به صورتی به شده است که اجرای آن بر روی رایانه‌های شخصی، برای کاربران ساده و آسان باشد.

9. ارزیابی این برناوهای را به عنوان ورودی دریافت می‌کند، مورد استفاده قرار داد. در این تحقیق خروجی به صورت آماده از برای ایجاد جامعیت با FLAYOUT به عنوان ورودی FDARC ابعاد واقعی مورد استفاده قرار گرفت. کارایی و ارتباط روی پیشنهادی با روش‌های مطرح نشان داده شد.

10. مدل زمان اجرا برناوهایی به شده در حذف قابل قبولی قرار دارد.

11. این روش به طراح اجازه می‌دهد که از همه عامل‌های مؤثر بر جامعیت استفاده کند به طوری که بتوانند هم عامل‌های کمی و هم عامل‌های کیفی را به طور همزمان در جدول رابطه فعالیت‌ها تاثیر بدهند.

12. با استفاده از این روش طراحی می‌تواند از همه عامل‌های به طریقی نسبتاً علمی استفاده کند، در حالی که بالا با توجه به یک قضاوت خالص، جدول رابطه فعالیت‌ها شکل می‌گیرد.

13. هزینه حمل و نقل موارد همراه درصدی‌ای از هزینه‌های اولیه را به خود اختصاص می‌دهد. مقایسه روش پیشنهادی با روش‌های دیگری و کری نشان می‌دهد که هزینه حمل و نقل مواد نسبت به این در روش کاهش یافته است.

14. در روش‌های دیگری و کری، لازم است که کاربر برای هر سطح توابع عضویت عامل‌های ورودی را مشخص کند. در حالی که در این روش این نیاز برطرف شده و از توابع عضویت پیشنهادی روش دب و پاتاچاریا استفاده شده است.

15. تعداد فاصله‌های گسترده‌تر از AHP برای تیزی و تنظیم‌کردن فعالیت‌های فازی می‌باشد. در این مکان را به طراحی می‌دهد که از هزینه می‌تواند را برای عامل‌های مختلف در نظر بگیرد.

16. استفاده از عملکرد بشری برای تعیین جدول رابطه فعالیت‌ها باعث انعطاف پذیری روش پیشنهادی شده است.

واژه‌نامه

1. Fuzzy set theory
2. Analytical hierarchy process
3. Fuzzy development of activity relationship chart
4. Fuzzy layout
5. Facilities planning
6. Activity relationship chart
7. Technique for order preference by similarity to ideal solution
8. Genetic algorithm
9. Multiple criteria decision making
10. Term
11. Semantic rule
12. Syntactic rule
13. Fuzzy decision making system
14. Fuzzifier
15. Knowledge base
16. Inference engine
17. Defuzzifier
18. Center of area
19. First of maxima
20. Last of maxima
21. Decision-making logic
22. Decision rules
16. سيموند، M. "استفاده از مجموعه‌های فازی، انتشارات جهاد دانشگاهی مشهد، 1368.
20. زاهدی، م. "نوری مجموعه‌های فازی و کاربردهای آن. نشر کتاب دانشگاهی، 1378.

پوست

• کمیته کردن هزینه حمل و نقل

\[
\begin{align*}
\text{min } Z_j = & \left(c_{ij} \times f_{ij} \left(|x_i^p - x_i^d| + |y_j^p - y_j^d| \right) \right) \\
& + c_{ij} \times f_{ij} \left(|x_i^p - x_i^d| + |y_j^p - y_j^d| \right) \\
\forall j = 2, 3, ..., n.
\end{align*}
\]

که:
\[
\begin{align*}
\text{مختصات نقطه ورود برای بخش } i & \text{ مختصات نقطه خروج برای بخش } i \\
\begin{pmatrix} x_i^d, y_i^d \end{pmatrix} & \text{ مختصات نقطه ورود برای بخش } j, \\
\begin{pmatrix} x_j^p, y_j^p \end{pmatrix} & \text{ مختصات نقطه خروج برای بخش } j, \\
\end{pmatrix} & j = 1, 2, ..., n.
\end{align*}
\]