Effects of Transverse and Longitudinal Steel Ratios and Shear Span on the Behavior of RC Beams under Shear Using Modified Compression Field Theory

D. Mostofinejad and M. Noormohamadi
Department of Civil Engineering, Isfahan University of Technology

Abstract: Although studies on RC beams under shear have a history record of more than 100 years, many important
issues in this context still remain that have evaded attention. The aim of the current study is to study a number of these less investigated aspects of the behavior of RC beams under shear. For this purpose, and based on the modified compression field theory, a computer program has been written to study the effects of transverse and longitudinal steel reinforcement and shear span, a/d, on the behavior of RC beams under shear. The results show that the shear capacity of the beam cannot be increased beyond an optimum amount of transverse steel ratio. This paper will try to provide a precise definition of this optimum transverse steel ratio. Another finding of the present study is that increasing tensile longitudinal steel ratio increases the amount of the optimum transverse steel ratio, while increasing a/d decreases the optimum transverse steel ratio.

Keywords: Reinforced concrete beam, Shear, Modified compression field theory, Optimum transverse steel ratio, Shear capacity.
مقدمه
تجزیه و بررسی تهرهای بن آرمه تحت برش تاریخچه‌ای
یکصد سال دارد. بیش از یک قرن از اولین مدل که در این مدت آزمایش شد گذشته. این مدل که تحت نام مدل تشابه خرابی‌های استفاده می‌شود، توسط ریتی[1] در سال 1899 پیشنهاد شد. در مدل تشابه خرابی‌های ریتی برای لحاظ آرمه تحت برش پس از ترک خودن به یک سیستم خرابی تحتی شده است. در این سیستم خرابی، آرمان‌های تاریخی نقش اعضا کشان قائم گردیا، برای بهبود اعضا مویش و میان فشاری خرابی، آرمان‌های طولی نقش اعضا کشانی کنار گرفته می‌شود. رئیس طولی این دو تاریخی، در مدل تشابه خرابی ریتی را اصلاح کرد[1]. در مدل تشابه خرابی‌های میان، بین توسط یک میاند تشابه خرابی ریتی را اصلاح

در آن، تاریخ‌های ACI-318 به منظور تعیین تعدادهای شکاف

برای بن آرمه از مدل تشابه خرابی‌های میان استفاده شده است. به

لغت صرف نظر کردن از مقاومت کششی بن آرمه، در این مدل،

ناتوان حاصل از آن به طور قابل توجهی مقاومت کششی است. به

همین دلیل در این آن تاریخ‌های برای استفاده از رابطه‌ای تجاری، ممکن

سیاست در بهبود و اصلاح نتایج حاصل از مدل تشابه خرابی‌های میان

می‌شود. این رابطه تجاری در اصل همان مقاومت برخی بن آرمه

در یک یزده تیر آرمه است. در نتیجه، تاریخ‌های ACI-318 از جمع طرفین برخی فولادهای عرضی و

طرفین برخی بن آرمه حاصل می‌شود. طروری که طرفین برخی

فولادهای عرضی با استفاده از روابط مدل تشابه خرابی‌های

میان، و طرفین برخی با استفاده از رابطه‌ای تجاری

محاسبه می‌شود[6]. برای این ترتیب دقت نتایج حاصل از

آن تاریخ در مقایسه با بن آرمه تبریز در تاریخ تبریز

بهری پهناوهان. با این وجود، نتایج و مقایسه با‌گنگای فراوانی در

خصوص رفتار انعکا وجود دارد که از دید آن تاریخ به‌نهان

استلال، سال 27، شماره 2، نسخه 13878

83
در نظریه میدان فشاری اصلاح شده با توجه به اینکه در این تحقیق نظریه میدان فشاری اصلاح شده استفاده شده است، ضروری است که ابتدا به طور محضی فرضیات، روابط و ویژگی‌های این نظریه مورد بحث قرار گیرد.

شکل 1- مدل تنش خربابی ریتر

شکل 2- مدل تنش خربابی مورش

بوده ولی در پیش بینی رفتار و ظرفیت برخی نتیجه اساسی ایفا می‌کند. هدف از این تحقیق، مطالعه رفتار تیرهای بتن آرمه تحت برخ و ثبیت این مفاهیم در خصوص رفتار این اعضای است. انجام این مهم توسط استفاده از روشی میسر و خواهد که در آن در هر لحظه از بارگذاری، اطلاع از وضعیت دقیق تنش و کرنش در هر نقطه از عنصر باربر تامپايشد باشد. در حال حاضر از میان کلیه روش‌ها، مدل‌ها و نظریه‌های ذکر شده در زمینه اعضای تحت برخ، فقط نظریه میدان فشاری اصلاح شده دارای قابلیت است. به همین جهت در این تحقیق با بهکارگیری این نظریه به بررسی رفتار تیرهای بتن آرمه تحت برخ و بیان مفاهیمی نوین در خصوص رفتار این اعضای خواهیم پرداخت.

2- نظریه میدان فشاری اصلاح شده

به منظور برآوردن این هدف، روابط تعادل، همسازی و تنش-کرنش در المان مذکور ارزش‌ده شده و مولفه‌های تنش و کرنش در بتن و آرماتورهای طولی و عرضی تعبیه می‌شوند.
روابط (۴) و (۵) تعیین کرده‌اند.

\[
\gamma_{xy} = \frac{2(\varepsilon_x - \varepsilon_y)}{\tan \theta} \\
\varepsilon_x + \varepsilon_y = \varepsilon_1 + \varepsilon_2 \\
\tan \theta = \frac{\varepsilon_x - \varepsilon_y}{\varepsilon_x + \varepsilon_y} = \frac{\varepsilon_1 - \varepsilon_y}{\varepsilon_1 + \varepsilon_2} = \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + \varepsilon_2}
\]

۲-۱۲- شرایط تعادل

با توجه به این مطلب که بارهای خارجی اعمال شده به آن مانند، توسط بینن و آرمان‌ها تحمل می‌شوند، و با استفاده از تعادل جسم آزاد آن مان در جهت x و y روابط (۶) و (۷) حاصل می‌شود.

\[
f_x = f_{cx} + \rho_{sx} f_{sx} \\
f_y = f_{cy} + \rho_{sy} f_{sy}
\]

با این فرض که مقاومت برخی آرمان‌های طولی و عرضی برای صفر است، تنها بررسی انجام شده در بین مراحل رابطه (۸) برای با کلی تنها تنش ویژه اعمال شده به آن مان می‌تواند می‌شود.

\[
V_{xy} = V_{cxy}
\]

همچنین با استفاده از دایره مهر تنش در بین و با تعادل جسم آزاد یک سطح تحت تنش‌های f_{cx}, f_{cy}, f_{cx}, و f_{cy} تعادل (۹) و (۱۱) قابل دسترسی‌اند. شکل (۵).

\[
f_{cx} = f_{cl} - V_{cxy}/\tan \theta_c
\]

۱۲-۱۲- شرایط همسازی

با فرض اتصال کامل بین بین و آرمان‌های طولی و عرضی و عدم لغزش بین آنها، تغییر شکل‌ها یکبین و آرمان‌ها همساز خواهند بود. بنابراین، مشابه پایه‌های (۱) و (۵) را بیشتر کرتشی که در شکل (۴) نشان داده شده است، می‌توان روابط همسازی مناسبی و مورد نیاز را در قالب

۸۵

استقلال، سال ۲/۲۷، شماره ۲/۲۷، زمستان ۱۳۸۷
اثقلال، سال ۳۷، شماره ۳، زمستان ۱۳۸۷

2-۳- روابط تنش-کرنش

پس از تعیین روابط همسازی و تعادل در المان بین آزم، به منظور برقراری رابطه بین مولفه‌های تنش و کرنش، روابط تنش-کرنش فولاد و بین را مورد استفاده قرار می‌دهیم. روابط

\[\sigma = f_1 - \sigma_{xy} \tan \theta_c \]
\[\sigma = f_1 - \sigma_{xy} (\tan \theta_c + \theta_c \tan \theta_c) \]

ذكر این نکته ضروری است که به عنوان یک فرض ساده قرار گرفته در نظریه میدان شای اصلاح شده، زاویه همکاتی تنش کششی اصلی و زاویه تنش کرنش کششی اصلی در بین مسایل در نظر گرفته می‌شوند (\(\theta_c = 0 \)).

عکس ۶- رابطه تنش-کرنش آرام‌ترهای طولی و عرضی

\[f_{xy} = f_{xy} = f_{xy} \leq f_{xx} \]
\[f_{yy} = f_{xi} = f_{yj} \leq f_{yy} \]

به منظور کامل شدن مدل، رابطه بین تنش فشاری اصلی و کرنش فشاری اصلی و رابطه بین تنش کششی اصلی و کرنش کششی اصلی در بین نیز مورد نیاز است. این رابطه به منظور به دست آوردن اطلاعات مورد نیاز برای تعیین روابط تنش-کرنش بین چندین المان بین آزم به خاصیت تنش‌های نرمال و برخی‌ها مورد بررسی قرار داده و در نهایت روابط (۱۳۱ و ۱۳۵) را به عنوان رابطه تنش-کرنش فشاری و رابطه (۱۶) را به عنوان رابطه تنش-کرنش کششی بین یک‌شانه هدایت هم‌کنده. نموودار

آرام‌ترهای طولی و عرضی مورد استفاده قرار می‌گیرند. (شکل ۶).

شکل ۵- آلفا دایره موهر تنش ب) تشکیل ایجاد شده در المان بین.

شکل 7- رابطه تنش-کرنش فشاری استفاده شده برای یافتن در نظر گرفتن میدان فشاری اصلاح شده

شکل 8- رابطه تنش-کرنش کششی استفاده شده برای یافتن در نظر گرفتن میدان فشاری اصلاح شده

3- تیرهای بین آرمه تحت برش

استفاده از نظریه میدان فشاری اصلاح شده در بررسی رفتار

و تعیین پاسخ تیرهای بین آرمه، مستلزم استفاده از مدل لاشهی است.

در این مدل، تیر در ارتفاع مقطع به لاشهی بینش و فولاد

طولی تقسیم می‌شود، شکل (9) هر لاشه بین توسط عرض \(b \)

ارتفاع \(h_1 \) مقدار آرمانور عرضی \(\rho_1 \) و موقعیت لایه نسبت به

محور میانی \(z_1 \) تعریف می‌شود. همچنین هر یک از لاشه‌های

آرمانور طولی نیز توسط مشخصات خود که شامل سطح مقطع

\(A_{Sj} \)، تنش تسریم و فلز و موقعیت آن نسبت به محور مناسب

تعریف می‌شوند. مشخصات عمومی مقطع عبارتند از:

مقاومت فشاری استوانهای بین \(\rho_1 \)، کرنش نیز تنش ماکزیمم

در بین \(\rho_1 \)، تنش تسریم آرمانور عرضی و مدل الاستیسیته

فولاد. در این روش پس از تخمین توزیع کرنش طولی در

ارتفاع مقطع، تعادال و هماسازی در هر یک از لاشه‌های بین

مرتبه به هر یک از این روابط به ترتیب در شکلهای (7) و (8)

ارائه شده است.

\[
\begin{align*}
 f_c' &= f_{c2\text{max}} - \left(\frac{e_2}{e_c} \right)^2 \quad \text{if} \quad e_c \geq e_{cr} \\
 f_c' &= \frac{f_c}{0.8 - 0.34 \frac{e_1}{e_c}} \quad \text{if} \quad e_c < e_{cr}
\end{align*}
\]

در نظر گرفتن میدان فشاری اصلاح شده با توجه به روابط تعداد

سطح تک، وضعیت انتقال نیرو در سطح تک نیز مورد بررسی

قرار می‌گیرد. که در اینجا از پردایش به آن خودداری می‌کنیم.

در نهایت با حل دستگاه معادلات غیر خطی شمای ساده معادلات

تعادال، معادلات هماسازی و روابط تنش-کرنش، می‌توان کلیه

مولفه‌های تنش و کرنش در عناصر باربر الیم را تعیین کرد.

87

استقلال، سال 1387، شماره 27، زمستان
کرنش در این لایه‌ها تعمین می‌شود. با استفاده از خروجی‌های این برنامه جایی شرایط تعادل نیروها و حمایتی کرنش‌ها در مقعف طی یک فرآیند سه و خطا کنترل می‌شود. با توجه به اینکه در این برنامه در هر محور از بارگذاری، کلیه مولفه‌های تنش و کرنش در تمام نقاط بین در دسترس است، مدلسازی ترک به سادگی امکان‌پذیر است. با این منظور کافی است کرنش کششی اصلی محاسبه شده در هر یک از لایه‌ها بین در هر محور از بارگذاری با کرنش کششی نظر ترک خوردگی قطری بین (\(\psi\)) مقدارشده. با پرگرداندن کرنش کششی اصلی از کرنش ترک خوردگی قطری بین (\(\psi\)) ترک قطری در بین اجراه شده و از این پس نشانه‌کنشی اصلی در بین از فرمول دوم وابطه (۱۶) محاسبه می‌شود. همچنین انتقال برش بر روی سطح ترک با در نظر گرفتن روابط تعداد در سطح ترک و محاسبه نشانه‌های فشاری و برشی ناشی از ترک‌های داهه‌ای تنگی در این برنامه لحاظ شده است. نحوه انجام این فرآیند به طور میلیت بدین مراجع [۵] بیان شده است. نتایج حاصل از این روش تحلیلی توسط ویکسو و کالیتزا نسبت آزمایشگاهی متعدد مقایسه شده و در کلیه موارد از دقت بسیار خوب و قابل قبولی برخوردار بوده است.([۷] نین این مقایسه مجدداً نتایج حاصل از این روش با نتایج آزمایشگاهی ضروری و منطقی به نظر نمی‌رسد. با این وجود قبل از استفاده از نتایج برنامه SMAFI و بیان نتایج جدید در مورد رفتار تیرهای بین آزم شده تحت برش لازم است که صحبت و سه‌مره و دقیقه نتایج تبادل نقشه‌ی به قدری و تبادل نقشه‌ی به قدری و تبادل نقشه‌ی به قدری و

tوسط نظیریه میدان فشاری اصلاح شده برقرار می‌شود. به نحوی که هر نکات از این لایه‌ها بین عنوان آنها غشاء‌ای بررسی شده در نظرگیری میدان فشاری اصلاح شده سطوح می‌شود. به نظیر نمونه‌ای به شناسایی نورپردازی و نگری همچنین در مقعف کنترل می‌شود. به این ترتیب به از دست نمی‌آید که مونتاژ‌های اتیک عملی شده سه و نیروی محوری، نیروی برش و نگری خمشی، مولفه‌های تنش و کرنش در کلیه نقاط عناصر باربر، این مشخصات خواهد شد. این روش به طور کامل در مرجع [۷] شرح داده شده است.

ترکب نظریه میدان فشاری اصلاح شده و مدل لایه‌ای ایمن روش، به روی ادیمی دقیق و قابل تعیین در بررسی رفتار تیرهای بین آزمایشگاهی است. این دلال استفاده از روش‌های معمول و خطا در حل معادلات نظریه میدان فشاری اصلاح شده و مدل لایه‌ای، حجم محاسبات در این روش به طور قابل توجهی زیاد است؛ به نحوی که جری با تدوین‌یک برنامه رایانه‌ای مکان استفاده از این روش می‌باشد. در تحقیق حاضر به منظور استفاده از این روش در بررسی رفتار تیرهای بین آزم شده است. به این پس این برنامه را به نام SMAFI خوای ابتکارهای برنامه رایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه را به نام SMAFI خواهیم نشانه‌ای. برنامه رایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه رایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه رایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است. از این پس این برنامه Rایانه‌ای شبکه‌های نشانه‌ای تغییر داده است.
اين برنامه در مقياس سه پلاک تحلیل ارائه شده توسط ویسو و کالینز بررسی پدیده، به این منظور تیپ ت شکل مشخص شده در شکل (10) را در نظر می‌گیریم. این تیپ توسط ویسو و کالینز بررسی شده و نمودار اندکنش تیبو در سلکر خمشی آن رسم شده است [7]. در این تحقیق به منظور بررسی صحت و سهم تابی حاصل از برنامه SMAFI یک پار دیگر نمودار اندکنش تیبو در سلکر خمشی این تیپ را تعیین می‌کنیم.

1- عدم اطلاع از شرایط حذف استفاده شده توسط ویسو و کالینز، مانند کرنش فشاری نهایی و کرنش کششی نهایی

2- مشخص نبودن اطلاعات دقیق هندسه تیپ که توسط ویسو و کالینز استفاده شده است. از جمله پوشش بین در بالا و پایین محیط و فاصله بین دو لایه آرامتور تحتانی.

با این وجود از هر دو شکل مشخص است که رفتار پیش‌نبه بیشتر توسط برنامه SMAFI دقيقا مشابه رفتار پیش‌نبه شده توسط ویسو و کالینز است.

این برنامه در مقایسه با نتایج برنامه تست ویسو و کالینز بررسی شده، به این منظور تیپ T شکل مشخص شده در شکل (10) را در نظر می‌گیریم. این تیپ توسط ویسو و کالینز بررسی شده و نمودار اندکنش تیبو در سلکر خمشی آن رسم شده است [7]. در این تحقیق به منظور بررسی صحت و سهم تابی حاصل از برنامه SMAFI یک پار دیگر نمودار اندکنش تیبو در سلکر خمشی این تیپ را تعیین می‌کنیم.

این برنامه در مقایسه با نتایج تحلیل ارائه شده توسط ویسو و کالینز بررسی شده، به این منظور تیپ T شکل مشخص شده در شکل (10) را در نظر می‌گیریم. این تیپ توسط ویسو و کالینز بررسی شده و نمودار اندکنش تیبو در سلکر خمشی آن رسم شده است [7]. در این تحقیق به منظور بررسی صحت و سهم تابی حاصل از برنامه SMAFI یک پار دیگر نمودار اندکنش تیبو در سلکر خمشی این تیپ را تعیین می‌کنیم.
شکل 11- مقایسه نمودار اندرکش نیروی برشی-لنگ خمشی ارائه شده توسط ویگو و کالینز [7] و نمودار حاصل از برنامه F= 0 SMAFI

شکل 12- مقایسه نمودار اندرکش نیروی برشی-لنگ خمشی ارائه شده توسط ویگو و کالینز [7] و نمودار حاصل از برنامه F= 220 kN SMAFI

گستن‌نگه که در ادامه مطالعه می‌شود صرفه‌جاز، با استفاده از این برنامه به بررسی رفتار چندین تسری بتن آرمه فرضی می‌پردازیم و با استفاده از نتایج حاصل از این بررسی، مقایسه‌پذیری بین زمینه‌های مختلف رفتاری بتن آرمه تحت برش را بین این دو روش تحلیلی استفاده می‌کنیم. به توجه به اینکه روش تحلیلی استفاده شده در این تحقیق یک مقطعی از تبر را بررسی می‌کند، لذا به منظم‌تر بررسی یک مقطعی از تبر را بررسی کرد. با توجه به اینکه تبر در اثر ترکیب برش و خمش در مقطع بحرانی، بتن آرمه تحت برش یا پایین تری نشان می‌دهد.

4- بررسی عوامل تأثیر گذار بر رفتار تیرهای بتن آرمه تحت برش

به منظور اطمینان از صحبت‌هایی که در صفحه پیشین از برنامه SMAFI با استفاده از این برنامه به بررسی رفتار چندین تسری بتن آرمه فرضی می‌پردازیم.

پس از اطمینان از صحبت‌هایی که در صفحه پیشین از برنامه SMAFI با استفاده از این برنامه به بررسی رفتار چندین تسری بتن آرمه فرضی می‌پردازیم.

به منظور اطمینان از صحبت‌هایی که در صفحه پیشین از برنامه SMAFI با استفاده از این برنامه به بررسی رفتار چندین تسری بتن آرمه فرضی می‌پردازیم.

90

استقلال، سال 27، شماره 2، زمستان 1387
گیخنگی برشي

جانشین روابط نظری میدان فشاری اصلاح شده در حداقل
یکی از آن‌ها بر تور قرار داده شده است. این گیخنگی بریشی است. این شرایط زمانی می‌دهد
که گیخنگی اصلی ناشی از برش در بین به طور قابل
توجه برگ شده باشد.

گیخنگی خمی

اگر کرنش فشاری اصلی در بین (یا ناشی فشاری اصلی در
بین) به کرنش جدید (یا مقاومت فشاری بین) بررسی می‌گردد،
گیخنگی خمی است. این مدل کرنشکاری بر روی می‌دهد
که نیروی در مقطع بحرانی به طور قابل توجه برگ شده باشد.

1-2 تأثیر نسبت فولاد عرضی در قرار

به این منظور اینجا نسبت فولاد عرضی در مدل
B1، B2 و B3 به یکدیگر مورد بررسی قرار می‌گیرد.

می‌توان به نسبت فولاد عرضی، نسبت فولاد طولی و نسبت
دهانه شدید در بین نسبت a/d a/đ را به عنوان نوز و

3-2 تشخیص نمره عملکرد برای انتخاب

اگر نسبت a/d به صورت یک بکار می‌رود، می‌توان به

بررسی شده در این المانات از کل نسبت طولی مدل

بود. قبل از شروع، استقلاجاتی که در این قسمت استفاده

می‌شود به طور مختصر شرح داده می‌شود:

گیخنگی نرم و یا پذیر

اگر گیخنگی نرم و یا پذیر، دلیل داده می‌شود، فولادهای کنشی نرم و یا پذیر است. در این حالت

کرنش کنشی در مقطع ناکامی‌های مایه و این افزایش

سریع کرنش کنشی نرم به‌دست می‌آید.

گیخنگی نرم

اگر در لحاظ گیخنگی فولادهای کنشی نرم نشده

باشد، گیخنگی نرم و یا پذیر است. در این نبض

این‌ها به‌کارگیری زیاد شدید نرم به طور ناکامی گیخنگی می‌شود.
این در مقایسه با تیر 1 افزایش یافته است، شرایطی متفاوت در مقایسه با تیرهای قبلی ایجاد می‌شود. در این تیر به علت افزایش نسبت فولاد عرضی در مقایسه با تیر 1، ابتدا ظرفیت تیر افزایش یافته وی این افزایش ظرفیت ادامه نمی‌پایند و به علت تسامح آرام‌ترهای طولی، تغییر شکلها به طور قابل توجهی افزایش یافته و در نهایت تیر در اثر کسی‌کشی برخی گسیختگی می‌شود. به

\[\text{کورش فولاد عرضی (MPa)} \]

\[\begin{array}{c}
\text{B1: 0.00126 (S=0.00126)} \\
\text{B2: 0.00188 (S=0.00188)} \\
\text{B3: 0.00251 (S=0.00251)} \\
\text{B4: 0.00377 (S=0.00377)} \\
\text{B5: 0.005 (S=0.005)} \\
\end{array} \]

\[\text{کورش فولاد عرضی (MPa)} \]

\[\begin{array}{c}
\text{B1: 0.00126 (S=0.00126)} \\
\text{B2: 0.00188 (S=0.00188)} \\
\text{B3: 0.00251 (S=0.00251)} \\
\text{B4: 0.00377 (S=0.00377)} \\
\text{B5: 0.005 (S=0.005)} \\
\end{array} \]

\[\text{کورش فولاد عرضی (MPa)} \]

\[\begin{array}{c}
\text{B1: 0.00126 (S=0.00126)} \\
\text{B2: 0.00188 (S=0.00188)} \\
\text{B3: 0.00251 (S=0.00251)} \\
\text{B4: 0.00377 (S=0.00377)} \\
\text{B5: 0.005 (S=0.005)} \\
\end{array} \]

\[\text{کورش فولاد عرضی (MPa)} \]

\[\begin{array}{c}
\text{B1: 0.00126 (S=0.00126)} \\
\text{B2: 0.00188 (S=0.00188)} \\
\text{B3: 0.00251 (S=0.00251)} \\
\text{B4: 0.00377 (S=0.00377)} \\
\text{B5: 0.005 (S=0.005)} \\
\end{array} \]

\[\text{کورش فولاد عرضی (MPa)} \]

\[\begin{array}{c}
\text{B1: 0.00126 (S=0.00126)} \\
\text{B2: 0.00188 (S=0.00188)} \\
\text{B3: 0.00251 (S=0.00251)} \\
\text{B4: 0.00377 (S=0.00377)} \\
\text{B5: 0.005 (S=0.005)} \\
\end{array} \]

\[\text{کورش فولاد عرضی (MPa)} \]

\[\begin{array}{c}
\text{B1: 0.00126 (S=0.00126)} \\
\text{B2: 0.00188 (S=0.00188)} \\
\text{B3: 0.00251 (S=0.00251)} \\
\text{B4: 0.00377 (S=0.00377)} \\
\text{B5: 0.005 (S=0.005)} \\
\end{array} \]

\[\text{کورش فولاد عرضی (MPa)} \]

\[\begin{array}{c}
\text{B1: 0.00126 (S=0.00126)} \\
\text{B2: 0.00188 (S=0.00188)} \\
\text{B3: 0.00251 (S=0.00251)} \\
\text{B4: 0.00377 (S=0.00377)} \\
\text{B5: 0.005 (S=0.005)} \\
\end{array} \]

\[\text{کورش فولاد عرضی (MPa)} \]

\[\begin{array}{c}
\text{B1: 0.00126 (S=0.00126)} \\
\text{B2: 0.00188 (S=0.00188)} \\
\text{B3: 0.00251 (S=0.00251)} \\
\text{B4: 0.00377 (S=0.00377)} \\
\text{B5: 0.005 (S=0.005)} \\
\end{array} \]
شکل 15- مشخصات هندسی و مکانیکی تیر

عبارت دیگر این تیر افزایش نسبت فولاد عرضی، به‌یاد آورید موجب افزایش طولیتی تیر شود، موجب افزایش شکل یابد. بله، این تیر باعث می‌شود که تعریف نسبت به‌دست نتایج متغیر و شکل یابد. به‌دست نتایج متغیر و شکل یابد.

4-2- اثر مقاخل نسبت فولاد طولی و نسبت فولاد

عیشی در تیر

به منظور افزایش‌دهی غیر فشاری تیرهای

تبین آرمیه تیرش در نظر گرفتن مقادیر مفروض توسط

فولاد طولی و نسبت فولاد عرضی در تیر Bn

فولاد این تیر را مورد بررسی قرار می‌دهیم.

در تیر Bn تیر را با فولاد فشاری تیر و فولاد کشته متغیر در نظر

می‌گیریم. همچنین نسبت فولاد عرضی در این تیر متغیر بوده

و برای مقادیر 188-005، 0.05، 0.1، 0.3، 0.7 و 0.5

می‌شود. سایر مشخصات این تیر در شکل (15) ارائه شده است.

مقدار فولاد فشاری در این تیر را برای

\[\rho' = 0.0226 \]

موارد مکانیکی تیر Bn
جدول 1- نتایج حاصل از تحلیل تیر Bₙ (مقطع با فولاد فشاری ثابت و فولاد کششی مناسب). (\(\rho' = 0.4\bar{\rho}_b \))

<table>
<thead>
<tr>
<th>(\rho/\bar{\rho}_b)</th>
<th>(\rho_b = \ast/0\times188)</th>
<th>(\rho_b = \ast/0\times251)</th>
<th>(\rho_b = \ast/0\times377)</th>
<th>(\rho_b = \ast/0\times505)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>طرفیت برخی (kN)</td>
<td>طرفیت برخی (kN)</td>
<td>طرفیت برخی (kN)</td>
<td>طرفیت برخی (kN)</td>
</tr>
<tr>
<td>0.2</td>
<td>D.S.</td>
<td>D.S.</td>
<td>D.S.</td>
<td>D.S.</td>
</tr>
<tr>
<td>0.4</td>
<td>94/70</td>
<td>94/70</td>
<td>99/70</td>
<td>101/88</td>
</tr>
<tr>
<td>0.6</td>
<td>115/25</td>
<td>130/8</td>
<td>138/14</td>
<td>D.S.</td>
</tr>
<tr>
<td>0.8</td>
<td>126/6</td>
<td>135/7</td>
<td>154/25</td>
<td>178/74</td>
</tr>
<tr>
<td>1</td>
<td>136/25</td>
<td>143/15</td>
<td>164/24</td>
<td>187/33</td>
</tr>
<tr>
<td>1/2</td>
<td>138/47</td>
<td>145/5</td>
<td>167/49</td>
<td>181/62</td>
</tr>
<tr>
<td>1/3</td>
<td>131/5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 16- اثر مقابل نسبت فولاد طولی و نسبت فولاد عرضی در تیر بₙ (مقطع با فولاد فشاری ثابت و فولاد کششی مناسب). (\(\rho' = 0.4\bar{\rho}_b \))

ظرفیت برخی تبر ایجاد نشده است. در این مقادیر از نسبت فولاد طولی و درازای نسبت فولاد عرضی \(\rho = 0.2\bar{\rho}_b = 0.2\times188 \) ممکن است طرفیت برخی‌های کششی بار از نوع کششی نرم و شکلی بادیر برخی است. در حالی که در صورت افزایش مقدار نسبت فولاد عرضی (\(\rho_b = \ast/0\times251 \) و \(\rho_b = \ast/0\times377 \) و \(\rho_b = \ast/0\times505 \) کششی بار از نوع کششی نرم و شکلی بادیر خمشی است. بنابراین در تکمیل مطالعه گفته شده در مورد فرض می‌کنیم. در این صورت نسبت فولاد متوان مقطع بربر \(\rho' = 0.4\bar{\rho}_b = 0.4\times188 \) خواهد بود.

در جدول 17 طرفیت برخی و مود کششی تبر از جمله مقادیر مختلف نسبت فولاد عرضی و نسبت فولاد کششی ارائه شده است. همچنین شکل 17 بر اساس نتایج این جدول تهیه و ترتیب کرده است. با توجه به شکل و دقت در مقدار جدول، مشاهده می‌شود که بار از نسبت فولاد طولی با افزایش نسبت فولاد عرضی تغییر محسوسی در

94

استقلال، سال 27، شماره 2، زمستان 1387
شکل 17- مشخصات هندسی و مکانیکی پی

جدول 2- نتایج حاصل از تحلیل در B2. (قطع بدون فولاد فشاری و با فولاد کششی منجر).

<table>
<thead>
<tr>
<th>ρ/ρ0</th>
<th>ρa = 0/0.988</th>
<th>ρa = 0/0.972</th>
<th>ρa = 0/0.937</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/2</td>
<td>D.S.</td>
<td>D.S.</td>
<td>D.S.</td>
</tr>
<tr>
<td>0/4</td>
<td>D.F.</td>
<td>D.F.</td>
<td>D.F.</td>
</tr>
<tr>
<td>0/6</td>
<td>D.S.</td>
<td>D.F.</td>
<td>D.F.</td>
</tr>
<tr>
<td>0/8</td>
<td>D.S.</td>
<td>D.F.</td>
<td>D.F.</td>
</tr>
<tr>
<td>1</td>
<td>B.S.</td>
<td>B.S.</td>
<td>B.S.</td>
</tr>
<tr>
<td>1/2</td>
<td>B.S.</td>
<td>B.S.</td>
<td>B.S.</td>
</tr>
<tr>
<td>1/4</td>
<td>B.S.</td>
<td>B.S.</td>
<td>B.S.</td>
</tr>
</tbody>
</table>

30 MPa ; Es=200 GPa

\[c_f = 0.0339 \]

\[y_f = 400 \text{ MPa} \]

\[b = 0 \]

\[f'_c = 30 \text{ MPa} \]

\[E_c = 200 \text{ GPa} \]

\[f_y = 400 \text{ MPa} \]

\[\rho = 0 \]

\[\rho_b = 0.0339 \]
شکل ۱۸- اثر مقیاس نسبت فولاد طولی و نسبت فولاد عرضی در بِ) (مقطع بدون فولاد قطعی و با فولاد کششی متعادل) (\(\rho = 0 \)).

فولاد عرضی قادره‌ای به افزایش طرفیت برشی تیر نخواهانی بود.

نرمال به توجه به مطالب ذکر شده تا این گزاره و با استفاده به

نتایج آرا به شاهد در جداول (۱۳) و (۱۴) و شکل‌های (۱۵) و

(۱۶) و (۱۷) می‌توان تعریف کامل و جامع نسبت بهینه فولاد عرضی را

به این صورت بیان کرد:

نسبت بهینه فولاد عرضی، حداکثر مقداری است که به ازای

آن نش در آزمایش‌های کششی به حداکثر برتری و یا سود

گسیختگی تیر از گسیختگی تیر برخی به گسیختگی خمشی

تغییر پایدار به عبارت بیان می‌گردد. اگر گسیختگی تیر شکل‌پذیر باشد

(بدون توجه به خمشی با برخی بودن گسیختگی)، با افزایش

نسبت فولاد عرضی طرفیت برشی افزایش نمی‌شود. اگر

اگر گسیختگی تیر از نوع گسیختگی خمشی باشد (بدون توجه

به ترد یا شکل‌پذیری بودن گسیختگی)، با افزایش نسبت

عرضی طرفیت برشی افزایش نخواهانی بود.

نرمال به توجه به جداول (۱۳) و (۱۴) و شکل‌های (۱۵) و

(۱۶) و (۱۷) و (۱۸) واضح است که نهایا در صورتی می‌توان با افزایش

نسبت فولاد عرضی طرفیت برشی تیر افزایش نخواهانی

یافته. اگر میزان این مطلب را در مورد مود گسیختگی ترد

خمشی نیز تعیین داد، نباید می‌توان این گونه بیان کرد که

جانشین گسیختگی تیر از نوع گسیختگی خمشی باشد (بدون

توجه به ترد یا شکل‌پذیری بودن گسیختگی)، با افزایش نسبت
نسب فولاد کششی مقطع برشی از ρ_{b} باشد $p_{\text{b}} = \rho_{\text{b}} / \rho_{\text{h}}$، نسبت بهینه فولاد عرضی برشی از $(\rho_{\text{b}} / \rho_{\text{h}} > 0.8)$، نسبت بهینه فولاد عرضی برشی از $(\rho_{\text{b}} / \rho_{\text{h}} = 0.7)$ عواضد. در این انگیزه ضروری است که حدود بند کامل تقریبی ۲٪ باشد. نسبت فولاد طولی در نسبت بهینه فولاد عرضی بیش از شده‌اند.

برای تعیین دقیق این حدود، بایستی فضایی بررسی و مود کششی نسبت به آزمایشات خیلی کوتک در نسبت فولاد طولی و نسبت فولاد عرضی تغییرات همانند. این نسبت بهینه فولاد عرضی شونده و این تغییر دفاعی نسبت نیروی کششی در مناسب شودن. با توجه به مطالب ذکر شده، بهترین نسبت فولاد کششی است. این تغییر را می‌توان این که هنگام که به طور کلی از افزایش نسبت فولاد کششی نسبت بهینه فولاد عرضی افزایش خواهد یافت. همچنین با مقایسه شکل‌هایی (۱۶ و (۱۸)، نتایج نسبت فولاد نشان معرض در نسبت بهینه فولاد عرضی قابل مشاهده است؛ که در این مثال از برخی از آن صرف نظر می‌کنیم.

نقطه دریک که با استفاده به جدول (۱) و (۲) و شکل‌های (۱۶ و (۱۸) می‌توان سهول کرد تاثیر نسبت فولاد کششی مقطع در طریقت بررسی این است. در این جدول و شکل‌های مثال‌هایی در طریقت بررسی می‌توان با افزایش نسبت فولاد کششی مقطع طریقت بررسی تا افزایش یاد که کششی نسبت بهینه فولاد عرضی از محدوده $p_{\text{b}} = \rho_{\text{b}} / \rho_{\text{h}}$ باشد. به طور مشابه در نمودار مربوط به $p_{\text{b}} = \rho_{\text{b}} / \rho_{\text{h}}$ می‌توان با افزایش نسبت بهینه فولاد عرضی از محدوده $p_{\text{b}} = \rho_{\text{b}} / \rho_{\text{h}}$ با افزایش نسبت فولاد عرضی چهار طرفی بررسی تا خواهند بود.

براساس نتایج جدول (۱) و (۲) و شکل‌های (۱۶، و (۱۸) می‌توان استفاده کرد که نسبت بهینه فولاد عرضی به شدت تاثیر نسبت فولاد کششی مقطع است. به عنوان مثال با توجه به نتایج نسبت بهینه فولاد عرضی بیش از $\rho_{\text{b}} / \rho_{\text{h}} = 0.7$ به در صورتی که نسبت فولاد کششی مقطع بین $\rho_{\text{b}} / \rho_{\text{h}} = 0.5$ و باشند $(\rho_{\text{b}} / \rho_{\text{h}} < 0.5)$ نسبت بهینه فولاد عرضی بین $\rho_{\text{b}} / \rho_{\text{h}} = 0.5$ و $\rho_{\text{b}} / \rho_{\text{h}} = 0.7$ باشند $(\rho_{\text{b}} / \rho_{\text{h}} > 0.7)$. نسبت بهینه فولاد عرضی بین $\rho_{\text{b}} / \rho_{\text{h}} = 0.7$ و $\rho_{\text{b}} / \rho_{\text{h}} = 0.5$ باشند $(\rho_{\text{b}} / \rho_{\text{h}} < 0.5)$. نسبت بهینه فولاد عرضی بین $\rho_{\text{b}} / \rho_{\text{h}} = 0.5$ و $\rho_{\text{b}} / \rho_{\text{h}} = 0.7$ باشند $(\rho_{\text{b}} / \rho_{\text{h}} > 0.7)$.

استقلال سال ۱۳۸۷ شماره ۲ زمستان ۱۳۸۷

188
شکل 19- مشخصات هندسی و مکانیک تیر

کاذر در رفتار تیرهای تحت برخی نیروهای مربوط به مطالعه چگونگی تاثیر این عامل در رفتار تیر و به ویژه در B_s نسبت به فولاد عرضی خواص درشت به این منظور تیر را مورد بررسی قرار می‌گیرد. مشخصات مکانیکی و هندسی تیر مذكور در شکل (19) ارائه شده است. رفتار این تیر به ازای مقادیر مختلف نسبت a/d و نسبت فولاد عرضی مورد بررسی قرار گرفته و نتایج این بررسی در جدول (3) و شکل (20) خلاصه شده است. با توجه به شکل و جدول مذکور، مشاهده می‌شود که با افزایش فولاد عرضی از $a/d = 2$ تا 5, نسبت p_s نسبت p_t از 251 تا 188 می‌باشد. به طور قابل توجه افزایش می‌باشد. این در حالی است که با افزایش مقادیر a/d, در نتیجه نسبت a/d از 2 تا 5, نسبت p_s به دلیل تسلیم آرام‌ترهای طولی و گسیختگی تیر و شکل پذیری، نسبت p_t به طور قابل توجهی کاهش می‌یابد. این در شرایطی است که در محصولات که گسیختگی تیر و ناگهانی است. نشان گرفته در آرام‌ترهای طولی در زمان گسیختگی به نش نسبت و به همین جهت با افزایش نسبت a/d تیر، نسبت p_s به طور قابل توجهی کاهش می‌یابد. این نتایج به ویژه در افزایش نسبت a/d خواهد شد.

آزمایشات در طولی نسبت a/d و نسبت p_s به طور قابل توجهی کاهش می‌یابد. این در شرایطی است که در محصولات که گسیختگی تیر و ناگهانی است. نشان گرفته در آرام‌ترهای طولی در زمان گسیختگی به نش نسبت و به همین جهت با افزایش نسبت a/d تیر، نسبت p_s به طور قابل توجهی کاهش می‌یابد. این نتایج به ویژه در افزایش نسبت a/d خواهد شد.
جدول 3: نتایج حاصل از تحلیل تیر Bₙ (اثر مقیاس نسبی a/d و نسبت فولاد عرضی)

<table>
<thead>
<tr>
<th>a/d</th>
<th>ρₛ = 0.00188</th>
<th>ρₛ = 0.00351</th>
<th>ρₛ = 0.00055</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>نسبت تیر موردی</td>
<td>نسبت تیر موردی</td>
<td>نسبت تیر موردی</td>
</tr>
<tr>
<td></td>
<td>(kN)</td>
<td>(kN)</td>
<td>(kN)</td>
</tr>
<tr>
<td>1/2</td>
<td>0.115/43</td>
<td>0.127/42</td>
<td>0.155/5</td>
</tr>
<tr>
<td>1/3</td>
<td>0.117/35</td>
<td>0.135/40</td>
<td>0.171/5</td>
</tr>
<tr>
<td>1/4</td>
<td>0.115/45</td>
<td>0.119/39</td>
<td>0.145/4</td>
</tr>
<tr>
<td>1/5</td>
<td>0.105/56</td>
<td>0.130/37</td>
<td>0.120/4</td>
</tr>
</tbody>
</table>

بیشترین نسبت فولاد عرضی در a/d = 1/2 و نسبت فولاد عرضی در a/d = 1/3

شکل 20: اثر مقیاس نسبی a/d و نسبت فولاد عرضی در تیر Bₙ

قسمت نیز تابیدی بر نتایج ارائه شده در بخش‌های قبل است.

با توجه به شکل (20) و جدول (3) می‌توان بیان کرد که اگر نسبت a/d برابر a/d باشد، نسبت بهینه ρₛ = 0.00188 است.

فولاد عرضی تقییاً برای a/d = 0.00777 ρₛ = 0.0051 است.

نسبت بهینه فولاد عرضی a/d = 2/5 بهبود: نسبت بهینه ρₛ = 0.00351

نسبت بهینه فولاد عرضی a/d = 3/5 بهبود: نسبت بهینه ρₛ = 0.00055

نسبت بهینه فولاد عرضی a/d = 4/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 5/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 6/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 7/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 8/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 9/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 10/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 11/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 12/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 13/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 14/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 15/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 16/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 17/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 18/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 19/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 20/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 21/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 22/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 23/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 24/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 25/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 26/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 27/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 28/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 29/5 بهبود: نسبت بهینه ρₛ = 0.0005

نسبت بهینه فولاد عرضی a/d = 30/5 بهبود: نسبت بهینه ρₛ = 0.0005
این تحقیق بررسی شیری نخواهیم بود. به عبارت دیگر، همراهی در تغییرات آن دمای تصدیق به یکی نسبت فولاد عرضی یافته می‌شود که در افزایش نسبت فولاد عرضی بیش از یک نقدار می‌باشد، طرفیت بررسی افزایش نخواهد.

2- با استفاده از نتایج بد است، نتایج افزایش سایه‌برداری است که به ازای آن نش در آرام‌تری کششی به حد شیمی بربرد و با مواد‌گیری تری از گسیختگی تری در بررسی به گسیختگی شمشیری تغییر می‌یابد. به عبارت دیگر، اگر گسیختگی تری شکل پذیر باشد (بی‌توجه به خمش یا بلند بودن افزایش نسبت یا مجمون اگر گسیختگی تری از نوع گسیختگی شمشیری باشد (بدون توجه به ترین یا شکل پذیری بودن گسیختگی)، با افزایش نسبت فولاد عرضی طرفیت بررسی افزایش نخواهی یافته. بنابراین مطالعه با تغییر اثرات شده برای نسبت بهینه فولاد عرضی و افزایش نسبت فولاد عرضی طرفیت بررسی افزایش داد که مود گسیختگی تری از نوع گسیختگی تری بررسی باشد.

3- با بررسی از الگوهای نسبت فولاد طولی و نسبت فولاد عرضی همچنین الگوهای نسبت فولاد طولی و نسبت فولاد عرضی در حوزه نسبت بهینه فولاد، به این نتایج رسیدیم که نسبت بهینه فولاد در غرضی به طور قابل توجه نسبت نشاند. در طولی و نسبت a/d نسبت بهینه نسبت داده که نسبت نسبت فولاد کششی مقطع، نسبت بهینه فولاد عرضی افزایش یافته a/d نسبت بررسی و a/d نسبت بهینه فولاد عرضی کاهش می‌یابد.

5- نتیجه‌گیری

در این تحقیق یا به‌توجهی از نظریه میزان فشاری اصل مراهه‌ای شده، برخی از عوامل متغیر در فشار و نیروپذیری سایه‌برداری مستقیماً اثر داشته و نسبت برش افزایش نسبت فولاد طولی نسبت فولاد عرضی و نسبت a/d نسبت بهینه a/d در حوزه نسبت بهینه فولاد، به این نتایج رسیدیم که نسبت بهینه فولاد در غرضی به طور قابل توجه نسبت نشاند. در طولی و نسبت a/d نسبت بهینه نسبت داده که نسبت نسبت فولاد کششی مقطع، نسبت بهینه فولاد عرضی افزایش یافته a/d نسبت بررسی و a/d نسبت بهینه فولاد عرضی کاهش می‌یابد.
1. truss analogy model
2. Ritter
3. Morsch
4. compressive force path method
5. Kotsovos
6. lower bound plasticity theory
7. Mitchell
8. Collins
9. compression field theory
10. modified compression field theory
11. Vecchio
12. layer model

6. ACI 318-02, “Building Code Requirements for Structural Concrete and Commentary,” American Concrete Institute, USA, 2002.