Annealing Effects on Microstructure and Microwave Properties of CuO-Doped (Zr0.8Sn0.2)TiO4

S. Vahabzadeh, M. A. Golozar, F. Ashrafizadeh and A. Ghasemi
Department of Materials Engineering, Isfahan University of Technology
Malek Ashtar University of Technology, Shahin Shahr

Abstract: (Zr0.8Sn0.2)TiO4 ceramics are suitable for use in resonators at microwave frequencies. However, the sintering temperature is as high as 1550°C. In this study, microwave properties of CuO-doped (Zr0.8Sn0.2)TiO4 in two different states, before and after annealing, were investigated. The results obtained showed that addition of CuO up to 2.5wt% increased the quality factor due to the increase in density and grain size. In addition, rearrangement of liquid phase during the annealing
process caused some changes in density, grain size, and shape. The behaviour of microwave patterns improved and the quality factor value increased. Thus, the behaviour of all samples improved as dielectric resonators.

Keywords: Zirconium titanate, Copper oxide, Dielectric resonator, Quality factor, Annealing.

1- مقدمه

سرامیکهای تیتانات کلسیم زیروکسیم به عنوان مواد

ارایه می‌شود. در این مطالعه، تغییرات چگالی، ریز ساختار و خواص الکتریکی به

بهبود یافته و مترکیسی بهبود می‌یابد. همچنین

صوتروایی و نماهای میکروسکوپی نمایش دهنده است. این ترکیب

فاکتور کیفیت بسیار بالا و نابودی الکتریک تغییر در به

دارد. به علاوه، فرکانس و نسبت به صفر است.[4] اما دلیل نفوذی بیشتری آن، منجر به

عدم استفاده از سرامیکهای با تراکم بالا می‌شود.[5]

2- مواد و روش انجام آزمایش

سرامیکهای ZST به استفاده از واکنش حالت گازی

آبکید خالص از TiO2، SnO2 و ZrO2 آماده شدند. مواد اولیه

پس از نگهداری مخلوط بوده است. در مخلوط به مقدار

مدت 3 ساعت. ترکیب و در حرارت خشک و کلسینه شدن. پس از نگهداری مخلوط بوده

از کوره، 3 ترکیب مجاری از آن به شدت. اولین ترکیب بدون

هیدروافودزیه بوده به ترکیب دیگری /15/ و 2/5 زنیو

ZnO و 1/2 ترکیب CuO اضافه شدند. درد مصرف و زنیو

عمیم به ترکیب بهبود داشت به سبب درجه کاهش آسیب

کاری قرار گرفتند. در محلول پلی ویسکل کلی

به میزان 4 درصد زنیو به عنوان عامل اتصال همهدی به

ترکیب اضافه شد. پس از ترکیب در کهنه یک از ترکیب و

آکر کردن بوده، نمونه‌ها تحت فشار 32 cm² از قالب‌های

به طول 100 mm و قطر بزرگ 6/5 13/0 ترکیب شدند. در محلول

بیش از 125 درجه C به مدت 3 ساعت تحت عملیات سیستمی قرار گرفتند. در نهایت و به منظور

200

استنلس سال, 27, شماره 2, اسفند 1387
کاتیون‌های موجود در ساختار ZST یا Cu4+ TiO4+ Sn4+ ZST و Cu8+ TiO4+ Sn4+ ZST در ۶۷۳°C و ۶۳۷°C است. (۱۲). بنابراین، در حضور مقادیر کم این افزودنی‌ها، نمک اکسید نشده است. در این حضور نیز می‌توان به نکته اشاره کرد که شناسایی مقادیر کم این افزودنی‌ها با استفاده از آزمایش‌های شناوی‌ای نشده است. در این شناسایی برای مونیتور سی‌آی‌دی که وظیفه بررسی آن‌ها توسط EDX و تحلیل GIS بررسی شد. چگالی نمودارها و توزیع روش امیگدان‌سازی گیرش شد. خواص مایکروپوره‌ها، فضای نیز با کمک دستگاه تحلیل برداری متصول به یک میکروسکوپ از‌زیابی شد.

3- نتایج و بحث
الف- نمودارهای سی‌آی‌دی
شرح (۱) الگوی پراش پرتو ایکس نمودارهای کلسیم‌شده در دمای ۱۱۰۰°C را نشان می‌دهد. همان طور که مشاهده می‌شود، پس از کلسیم‌شدن در این دما، اکسیدهای اولیه TiO2 و SnO2 و ZrO2 روند موجب گسترش می‌شود و سبب تغییر در مولکول‌های پدیده می‌شود. در شماتیک (۱) نشان داده شده این فضاهای کم‌تولید بیرونی با اکسید اطراف است. حداکثر شاخه بین پدیده‌ای نیز است که با پیوند تشکیل می‌شود.

جدول (۱) ارائه شده‌اند. افزایش جنتیک در چگالی نمودارهای حاوی اکسید مس نسبت به نمودار بدون افزودنی مونیتور سی‌آی‌دی در دمای ۶۵۰°C (دمای تغییر، ۱۲۵۰°C) نمودار (۳) نشان دهنده است که با افزایش مقدار این افزودنی و در نتیجه افزایش مقدار مذاب تشکیل شده است. سی‌آی‌دی نمودارهای زیاد به ویژه در نتیجه درصد تخلخل در نمودارها کاهش می‌یابد.

شکل (۲) مولفولوژی دانه‌ها را نشان می‌دهد. همان‌گونه که مشاهده می‌شود، در همیشه بین نمودارها، دانه‌که کروی تکنیست. در مورد نمودار ساختار اکسید مس ۱/۵ درصد و ZnO نمودار نشان دهنده کاهش گریزی در ساختار اکسید مس به عنوان آنزای افزودنی در ZST نادرد. علاوه بر این در همیشه بین نمودارها، فاز اکسید مس ۷۰ درصد اکسید مس و یا Cu2+ روي مشاهده نشده. دلیل آن ترکیب شعاع پدیده ن‌شده است. مقدار (۲) تأثیر اکسید آنلی بر ریزساختار و خواص نمودارها در بررسی ساختار شده در دمای ۱۵۰°C به مدت ۲۰ ساعت گرم‌داشته است. تعداد محدود در کرده‌سیر شده.

فازایی نمودارها به کمک پراش پرتو ایکس با استفاده از هدف‌می‌شود. (۱۲) نشان داده شده. میکرو‌سی‌آی‌دی ( تشکیل از استفاده از کلیه‌ای‌کارکنان، و تغییر مونیتور سی‌آی‌دی روش امیگدان‌سازی گیرش شد. خواص مایکروپوره‌ها، فقط نیز با کمک دستگاه تحلیل برداری متصول به یک میکروسکوپ از‌زیابی شد.
جدول ۱- مقادیر چگالی نمونه‌ها

<table>
<thead>
<tr>
<th>نمونه</th>
<th>چگالی (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون افزودنی</td>
<td>۱/۳۰۴۸</td>
</tr>
<tr>
<td>درصد وزنی اکسید مس ۱/۵</td>
<td>۲/۱۸۷</td>
</tr>
<tr>
<td>درصد وزنی اکسید مس ۲/۵</td>
<td>۱/۸۶۵</td>
</tr>
</tbody>
</table>

الف) نمونه بدون افزودنی
ب) نمونه حاوی ۱/۵ درصد وزنی CuO
ج) نمونه حاوی ۲/۵ درصد وزنی CuO

الف) نمونه بدون افزودنی
ب) نمونه حاوی ۱/۵ درصد وزنی CuO
ج) نمونه حاوی ۲/۵ درصد وزنی CuO
شکل ۲- شکل و توزیع اندازه دانه در نمونه‌های (الف) و (ب) درصد اکسید مس.

۲/۵ درصد اکسید مس.

نتیجه‌گیری‌ها: علاوه بر افزایش اندازه دانه‌گوشه‌دار ناشی از افزایش درصد اکسید مس، اندازه دانه‌ها نیز به مقدار جدی افزایش یافت. در تمام نمونه‌ها اندازه دانه در گستوری ۲-۵ μm است. با این تفاوت که افزایش مقادیر افروختنی درصد دانه‌های کوچک‌تر کمتر شد و به کمتری نزدیک شدند. به علاوه در هیچ یک از نمونه‌ها ترکیب مشاهده نشد.

جابهٔ چیپها با تغییرات درصد اکسید مس شناسانده تغییر در فاصله‌ها صفحات کریستالی و پارامترهای شبکه است. با استفاده از چهار پیک (۱۰۰)، (۱۱۱)، (۱۱۰) و (۲۲۰)، مقادیر پارامترهای شبکه و حجم سولول واحد آن محاسبه شدند. تغییرات به وجود آمده در تمام نمونه‌ها از جابه‌ای نسبی کاتیون‌های Ti^4+ و Sn^4+ و Zr^4+ در CuO جهت تغییر نمک در فرآیندهای آنها در اثر حضور باشدکه تغییرات در فرآیندهای بیوندهای موجود احتمالاً می‌کند. این تغییرات به همراه تغییرات در پارامترهای فضایی موجود که به عنوان اثری از جابه‌ای کاتیون‌ها و تأثیر بر استحکامات منظم- نامنظم در نظر گرفته شود، بر پارامترهای دی‌الکتریک تأثیر می‌گذارد. [۹]{1387}

در جدول (۳) مقادیر فرکانس تشکیل، میزان جذب در فرکانس مذکور، پهنای باند فرکانس تشکیل، تلفات دی‌الکتریک (ک متناسب با عکس Q)، و Q را در آورده است. همگونی که مشاهده شد نمونه‌های مختلفی از فرکانس تشکیل به عنوان یک پارامتری ذاتی ثابت است.
جدول ۲ - مقادیر پارامترهای شیشه و حجم سلول واحد نمونه‌ها

<table>
<thead>
<tr>
<th>نمونه‌</th>
<th>بدون افزودنی</th>
<th>۱/۵ درصد ویژه آکسید مس</th>
<th>۲/۵ درصد ویژه آکسید مس</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>۱۲۸/۴</td>
<td>۱۳۱/۸</td>
<td>۱۳۷/۸</td>
</tr>
<tr>
<td>(A) ۵</td>
<td>۵۳۷</td>
<td>۵۳۷</td>
<td>۵۳۷</td>
</tr>
<tr>
<td>(A) ۱</td>
<td>۵۱۱</td>
<td>۵۱۱</td>
<td>۵۱۱</td>
</tr>
<tr>
<td>(Ah)</td>
<td>۴/۸</td>
<td>۴/۸</td>
<td>۴/۸</td>
</tr>
</tbody>
</table>

جدول ۳ - مقادیر فرکانس تشکید، میزان جذب، پهنای باند فرکانس تشکید، نرخ میلی‌های ZST

<table>
<thead>
<tr>
<th>Qxf(GHz)</th>
<th>tanδx10^3</th>
<th>(MHz) فرکانس (dB)</th>
<th>f(GHz)</th>
<th>ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۲۴۷/۲</td>
<td>۲/۷</td>
<td>۳/۲۶</td>
<td>۲/۷</td>
<td>بدون افزودنی</td>
</tr>
<tr>
<td>۴۸۳۷/۵/۹</td>
<td>۰/۳۳۸۳</td>
<td>۳/۰۸</td>
<td>۰/۳۳۸۳</td>
<td>بدون افزودنی</td>
</tr>
<tr>
<td>۷۹۳۱/۳/۹</td>
<td>۱/۶۶</td>
<td>۳/۰/۹۱</td>
<td>۳/۰/۹۱</td>
<td>بدون افزودنی</td>
</tr>
</tbody>
</table>

نوع‌های آیلی شده

۱. به‌صورت دقیق، فازیاب‌یاب این نوع‌های آیلی می‌توانند با Cu۲Zn۶ شناسایی نشوند. ۲. این نوع‌های حاکم Cu۲Zn۶ شناسایی مشابه اندازه‌گیری می‌شوند. ۳. این نوع‌های Ha۱ و Ha۲ شناسایی نشوند.

بررسی این نمونه‌ها نشان داد که میزان انقباض به افزایش جذب و حجم سلول واحد نمونه‌ها کاهش می‌یابد. همان‌گونه که مشاهده می‌شود در این نوع‌های Ha۱ و Ha۲ شناسایی نشوند.

بی‌انتظار است که در نمونه‌های Ha۱ و Ha۲، میزان انقباض به افزایش جذب و حجم سلول واحد نمونه‌ها کاهش می‌یابد.

نتیجه‌گیری‌های دیگری دارای افزودنی و توزیع مجدد آن، نقش مؤثری را در افزایش Qxf داشته و نشان می‌دهد که

۱. به‌صورت دقیق، فازیاب‌یاب این نوع‌های آیلی می‌توانند با Cu۲Zn۶ شناسایی نشوند.

۲. این نوع‌های حاکم Cu۲Zn۶ شناسایی مشابه اندازه‌گیری می‌شوند.

۳. این نوع‌های Ha۱ و Ha۲ شناسایی نشوند.

بررسی این نمونه‌ها نشان داد که میزان انقباض به افزایش جذب و حجم سلول واحد نمونه‌ها کاهش می‌یابد. همان‌گونه که مشاهده می‌شود در این نوع‌های Ha۱ و Ha۲ شناسایی نشوند.
جدول ۴- مقادیر انقباض در راستای قطر و چگالی براي نمونه‌های آبیل شده.

<table>
<thead>
<tr>
<th>چگالی (g/cm³)</th>
<th>ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون افزودن</td>
<td>0/34</td>
</tr>
<tr>
<td>۱/۵ درصد وزنی اکسید سیس</td>
<td>۰/۵۱</td>
</tr>
<tr>
<td>۲/۵ درصد وزنی اکسید سیس</td>
<td>۰/۵۶</td>
</tr>
</tbody>
</table>

نمودن عناصر افزودنی می‌تواند اثرات مثبتی را بر روی پیکه‌های CuO در نمونه‌های مختلف است. از این رو می‌توان گفت که فاز مذاب تشکیل شده با بهبود دیفوزیون و انتقال مواد، می‌تواند در ردش دانه مولتی واقع شود.

در تمامی نمونه‌ها، دانه‌ها به حالت اکسید داشتند و به سرعت گوشواره‌دار بودند. با افزایش درصد افزودنی، درصد دانه‌های گوشواره‌دار بیشتر می‌شود. به گونه‌ای که در مورد نمونه حاوی ۲/۵ درصد وزنی CuO، دانه‌های گوشواره‌دار چشم‌پزشکان اما درصد آنها در سایر نمونه‌های مختلف در جدول (۵) آورده شده است. همان‌گونه که مشاهده می‌شود، تفاوت‌های اندکی در مقادیر محاسبه شده وجود دارد. با توجه به تعداد بیشتر کمپانه‌هایی که در هر مورد ۳۰ واحد بالاتر، ابنیهی خاصی باشند. توجه کامل توجه دیگر،
جدول 5- مقادیر پارامتر بافت نمونه‌های آتلی شده.

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>بدار انرژی</th>
<th>بدار انرژی</th>
<th>بدار انرژی</th>
<th>بدار انرژی</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>0.224</td>
<td>0.226</td>
<td>0.233</td>
<td>0.219</td>
</tr>
<tr>
<td>(11)</td>
<td>0.204</td>
<td>0.205</td>
<td>0.206</td>
<td>0.203</td>
</tr>
<tr>
<td>(101)</td>
<td>0.198</td>
<td>0.199</td>
<td>0.198</td>
<td>0.197</td>
</tr>
<tr>
<td>(10)</td>
<td>0.108</td>
<td>0.109</td>
<td>0.107</td>
<td>0.106</td>
</tr>
<tr>
<td>(20)</td>
<td>0.323</td>
<td>0.324</td>
<td>0.325</td>
<td>0.324</td>
</tr>
<tr>
<td>(30)</td>
<td>0.305</td>
<td>0.306</td>
<td>0.307</td>
<td>0.306</td>
</tr>
<tr>
<td>(40)</td>
<td>0.285</td>
<td>0.286</td>
<td>0.287</td>
<td>0.286</td>
</tr>
<tr>
<td>(50)</td>
<td>0.265</td>
<td>0.266</td>
<td>0.267</td>
<td>0.266</td>
</tr>
<tr>
<td>(60)</td>
<td>0.245</td>
<td>0.246</td>
<td>0.247</td>
<td>0.246</td>
</tr>
<tr>
<td>(70)</td>
<td>0.225</td>
<td>0.226</td>
<td>0.227</td>
<td>0.226</td>
</tr>
<tr>
<td>(80)</td>
<td>0.205</td>
<td>0.206</td>
<td>0.207</td>
<td>0.206</td>
</tr>
<tr>
<td>(90)</td>
<td>0.185</td>
<td>0.186</td>
<td>0.187</td>
<td>0.186</td>
</tr>
<tr>
<td>(100)</td>
<td>0.165</td>
<td>0.166</td>
<td>0.167</td>
<td>0.166</td>
</tr>
<tr>
<td>(110)</td>
<td>0.145</td>
<td>0.146</td>
<td>0.147</td>
<td>0.146</td>
</tr>
<tr>
<td>(120)</td>
<td>0.125</td>
<td>0.126</td>
<td>0.127</td>
<td>0.126</td>
</tr>
<tr>
<td>(130)</td>
<td>0.105</td>
<td>0.106</td>
<td>0.107</td>
<td>0.106</td>
</tr>
<tr>
<td>(140)</td>
<td>0.085</td>
<td>0.086</td>
<td>0.087</td>
<td>0.086</td>
</tr>
<tr>
<td>(150)</td>
<td>0.065</td>
<td>0.066</td>
<td>0.067</td>
<td>0.066</td>
</tr>
<tr>
<td>(160)</td>
<td>0.045</td>
<td>0.046</td>
<td>0.047</td>
<td>0.046</td>
</tr>
<tr>
<td>(170)</td>
<td>0.025</td>
<td>0.026</td>
<td>0.027</td>
<td>0.026</td>
</tr>
<tr>
<td>(180)</td>
<td>0.005</td>
<td>0.006</td>
<td>0.007</td>
<td>0.006</td>
</tr>
</tbody>
</table>

توجه: به تغییرات مقادیر انرژی منجر به تغییرات در این پارامتر ذاتی 26/6dB می‌شود. میزان جذب در نمونه بدون انرژی حدود است. حضور و افزایش درصد اکسید مس این مقادیر را افزایش می‌دهد به‌طوری که در نمونه حاصل 2/5 درصد وزنی اکسید مس، این پارامتر به مقادیر 42/6dB می‌رسد. مقادیر به دست آمده نشان می‌دهد که با افزایش درصد اکسید مس، افزایش می‌یابد. 

برنده تغییرات تلفات دی الکتریک و Q×f و به عنوان یک پارامتر ذاتی با توجه به تغییرات ریسک‌های تنش نشان می‌دهد که تلفات دی الکتریک و Q×f و به شدت مشترک از چگالی مشاهده شد، می‌توان دلیل این تفاوت کم را ببان کرد. به نظر می‌رسد، با توجه به اینکه در سیستم‌های سرامیکی نفوذ به کنده‌ی شراب به‌طور گسترده، زمان و دما مورد استفاده به منظور مطالعه‌ی فرآیند آتلی برای رخداد کامل بافت و یا مقادیر مقبول توجه از آن کم به‌دست آمده است و تعیین دقیق آن نیازمند زمان‌های طولانی‌تر آتلی است.

در جدول (6) مقادیر فرکانس شدید، میزان جذب، به‌هنا بانف فرکانس شدید، تلفات دی الکتریک و Q×f و نمونه‌های آتلی شده آورده شده‌اند. این مقادیر نشان می‌دهند که فرکانس شدید برای نمونه‌های مختلف آتلی شده یکسان نیست و

استنصال: سال 1387، شماره 2، استنصال
جدول ۶ - مقادیر فرکانس تشغیل، میزان جذب، پهنای باند فرکانس تشغیل، تلفات دی الکتریک و
\[
\begin{array}{|c|c|c|c|}
\hline
Q\times f \text{(GHz)} & \tan \theta \times 10^3 & \text{پهنای باند فرکانسی (MHz)} & \text{میزان جذب (dB)} & f \text{(GHz)} \\
\hline
8749 & 1/3570 & 20/66 & 6/64 & 12/24125 \\
7895/6 & 0/0/1895 & 2/81 & 23/92 & 14/875 \\
8604/9 & 0/0/1320 & 1/53 & 44/77 & 11/14925 \\
\hline
\end{array}
\]

نمونه‌هایی است که در مورد افرادی که مشاهده می‌شود…

حل:...

دربحث‌های...

از افزایش ده داه می‌توان به نمونه‌هایی که در مورد...

در افرادی که مشاهده می‌شود...
شکل 6-الگوهای جذب نمودهای الف) حاوی 1/5 و ب) 2/5 درصد وزنی اکسید مس در حالت پیش از آئین.
شکل 7- اگر های جذب نمونه‌های ألف (ال/ب) حاوی 1/5 و (ب) 2/5 درصد وزنی اکسید سر در حال آسیب گذشته.

اما اگرها به دست آمده از نمونه‌های آسیب گذشته نشان داد که در نمونه حاوی 1/5 درصد وزنی از افزودنی پیک مذکور حذف شده است. همگنی، ملاحظه شده که نوسانات علاوه‌ای نمایان نیست در اطراف پیک وجود دارد که این بداند در مورد نمونه حاوی 2/5 درصد وزنی از افزودنی نیز مشاهده شد، شکل (6).

۲۰۹

استقلال، سال ۱۳۸۷ شماره ۲ استاد
1. binder
2. flux former

مراجع


