Annealing Effects on Microstructure and Microwave Properties of CuO-Doped (Zr$_{0.8}$Sn$_{0.2}$)TiO$_4$

S. Vahabzadeh, M. A. Golozar, F. Ashrafizadeh and A. Ghasemi

Department of Materials Engineering, Isfahan University of Technology
Malek Ashtar University of Technology, Shahin Shahr

Abstract: (Zr$_{0.8}$Sn$_{0.2}$)TiO$_4$ ceramics are suitable for use in resonators at microwave frequencies. However, the sintering temperature is as high as 1550°C. In this study, microwave properties of CuO-doped (Zr$_{0.8}$Sn$_{0.2}$)TiO$_4$ in two different states, before and after annealing, were investigated. The results obtained showed that addition of CuO up to 2.5wt% increased the quality factor due to the increase in density and grain size. In addition, rearrangement of liquid phase during the annealing
1- مقدمه

سرامیکهای تیتانیت قلب زیرکوینوم به عنوان مواد الکتریکی در شیکه‌های مخابراتی بسیار مورد توجه قرار گرفته‌اند. در این میان ترکیب $\text{Zr}_0.8\text{Sn}_{0.2}\text{TiO}_4$ به بهبود پایه و مترکیسازی بهبود می‌ کند. در این ترکیب $\text{Zr}_0.8\text{Sn}_{0.2}\text{TiO}_4$ صورت معرفی می‌شود. به عنوان یکی از میان‌های زیرکوینوم ZST صورت مشاهده و الکتریکی شناخته می‌شود. این ترکیب یک روکش خوبی برای الکتریکی ترکیب به داده و ضریب دایمی فرکانس تند دارد. این ماده به عنوان میکروسکوپی شیمی آنالیز و میکروسکوپی میکروسکوپی ترکیب به دست آمده است. استفاده از الکتریکی سرامیکهایی با تراکم بالا می‌شود. یکی از روشهای است که ممکن است موجب کاهش دهند. الکتریکی سرامیکهای Ra به نحو مثقوب کاهش دیده و خواص مایکروویوی آن ZST نیز در دو مطلب حفظ کنند. این افزودنیهای قابلیت مایکروویوی دارد. این میزان ترکیب یک ماده پلاستیکی فیزیکی می‌شود و این طرح به دو ترکیب زیستی کمک می‌کند. این نیز آب و از طریق تغییر در چگالی، ریزساختار، ساختار، نقص و در صورت امکان ساختار آلوده، سرامیکهای Ra تحت تأثیر قرار می‌دهند. از آن جایی که خواص مایکروویو ویژه‌تر به مایکرو مایکروویوی ویژه‌تر است. الکتریکی سرامیکهای CuO که این ترکیب نوعی می‌کنند. تحقیقات انجامشده عملیات شامل بررسی تأثیر این افزودنیهای بر مترکیسازی، تغییرات ریزساختاری به سیستم‌ها و خواص دیالکتریک است. اما نکته‌ای که وجود دارد این است که هنوز مکانیزم دقیقی برای ساختار‌های مترکیسازی بهبود پایه یا چگونگی تأثیر افزودنی بر نلغافی در الکتریکی بیشتری نشان ده است و غالبا مکانیزم‌هایی که از طریق آنها افزودنیها بر تلفات موردنی تأثیر می‌گذارند، ناشناخته است.

2- مواد و روش انجام آزمایش

سرامیکهای ZST با استفاده از واکنش حالت جامد سه اکسید خالص TiO_2, SnO_2 و ZrO_2 آماده شدند. مواد اویه طبق نسبت استوکومتری مورد نظر ترکیب، مخلوط شدند. پس از انجام آسیاکاری، مخلوط بوده در آب مقطور به مدت 3 ساعت ترکیب و در 1100 درجه سانتی‌گراد وقت در خشکی و کلیشبندی شدند. پس از حرارت مخلوط بوده از کوره 3 ترکیب مجاری ریزش شد و مولکول SnO_2 اضافه شدند. CuO و ZnO در مدت و در دمای زنی و در مدت زنی ZnO و در 1 دمای و در دمای زنی CuO خود در هر سپس به ترکیب‌های صدای آسیا کاری قرار گرفتند. در مرحله بعد، محلول بلی وینیل کلی به میزان 4 درصد و زنی به عنوان عامل اتصال به ترکیب اضافه شد. پس از خشک کردن هر یک از ترکیب‌های کردن CuO، در ترکیب 37 cm3 عمیق و انتقال از 37 cm3 طبیعت به انتقال 1.5 cm3 طبیعت در مرحله $125^\circ C$ به مدت 3 ساعت تحت عملیات سیستمی نهایی قرار گرفتند. در نهایت و به منظور
کاتینون‌های موجود در ساختار Cu۲+ و Ti۴⁺ و Sn۴⁺ که در عنوان شده شده‌اند، در دمای ۱۱۰۰° سانتی درجه هم‌اکنون به عنوان نمودار است. در این خصوص نیز می‌توان به دنبال اشاره کرد که شناسایی XRD مقادیر کم فازه با استفاده از طریقه چون حجم فضاهای به نشان دهنده در ساختار بی‌بار بزرگ آن است. از آنجا که روش ورود و استقرار آن به عنوان یک بین نشین مستلزم اجرا پیوند با اهمیت اطراف است. حذفی شعاع پیوندی نیز است که این پیوند تشکیل شود.

نتایج حاصل از اندوگرافی چگال‌گی نمودارهای

dماد ۱۵۰۰° سانتی درجه هم‌اکنون به عنوان نمودار است. در این نمودارهای ملایم‌سایی نمودارهای را دارد. هم چنین فاصله‌ای یکسان با افزایش درصد اکسید مس نشان دهنده است که افزایش مقادیر این افزودنی و در نتیجه افزایش مقادیر مذاب تشکیل شده، سیستم پایدار نمودارهای بهبود یافته در نتیجه دیده می‌شود. نتایج حاصل از اندوگرافی چگال‌گی نمودارهای

در شکل ۱ اکسید پرایند ایکس نمودارهای کلسینی شده در دمای ۱۱۰۰° سانتی درجه هم‌اکنون به عنوان نمودار است. در این نمودارهای تفکرویه نمودارهای را دارد. هم چنین افزایش چگالی با افزایش درصد اکسید مس نشان دهنده است که افزایش مقادیر این افزودنی و در نتیجه افزایش مقادیر مذاب تشکیل شده، سیستم پایدار نمودارهای بهبود یافته در نتیجه دیده می‌شود. نتایج حاصل از اندوگرافی چگال‌گی نمودارهای

در شکل ۲ روش پرایند ایکس نمودارهای سبز در دمای ۱۵۰۰° سانتی درجه هم‌اکنون به عنوان نمودار است. در این نمودارهای تفکرویه نمودارهای را دارد. هم چنین افزایش چگالی با افزایش درصد اکسید مس نشان دهنده است که افزایش مقادیر این افزودنی و در نتیجه افزایش مقادیر مذاب تشکیل شده، سیستم پایدار نمودارهای بهبود یافته در نتیجه دیده می‌شود. نتایج حاصل از اندوگرافی چگال‌گی نمودارهای

در شکل ۳ مورفولوژی دانه‌ها را در نمودارهای حاوی اکسید مس نشان می‌دهد. همان‌گونه که مشاهده می‌شود، در هیچ یک از نمودارهای دانه‌ای کروی نیستند. در مورد نمودارهای حاوی Cu۲+ درصد وزنی Cu۲+ تغییر چندانی در شدت نسبی پیکها حاصل نمودارد. این امر نشان می‌دهد که تغییرات مقادیر اکسید مس به عنوان افزودنی تاثیر بلند منظورهای در ZST ندارد. علاوه بر این در هیچ یک از نمودارهای دانه‌ای افزودنی مس و یا Cu۲+ به روز مشاهده نشد. دلیل آن تغییرات شعاع پیوندی Cu۲+ در ZST
جدول 1 - مقادیر چگالی نمونه‌ها

<table>
<thead>
<tr>
<th>نمونه</th>
<th>چگالی (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدن افزودنی</td>
<td>3.668</td>
</tr>
<tr>
<td>CuO 1/2 درصد وزنی</td>
<td>3.887</td>
</tr>
<tr>
<td>ZrO 0.8Sn0.2TiO4 2</td>
<td>6.667</td>
</tr>
</tbody>
</table>

الف) نمونه بدون افزودنی
ب) نمونه حاوی 1/2 درصد وزنی CuO
ج) نمونه حاوی 1/5 درصد وزنی CuO

شکل 1- الهوای پرتو ایکس نمونه‌ی کلسیمی شده در دمای 1100°C.

شکل 2- الهوای پرتو ایکس نمونه‌ای سبتر شده در 1250°C.
نتیجه‌گیری‌های به‌همراه افزایش میزان جذب و کاهش پهنای باند فرکانس تشکیل، تلفقات درکلریک کاهش می‌یابد. در تمام نمونه‌های حاوی اکسید مس، میزان جذب تغییر اندامی ندارد و در تمام موارد حدود 31 dB است که نسبت به نمونه بدون افزودنی با جذب حدود 22 dB افزایش چشمگیری داشته است. مقادیر به‌دست آمده نشان می‌دهد که تلفقات درکلریک با افزایش درصد افزودنی افزایش یافته است و روند مشابه با چگالی دارد.

نکات چاپی‌ها، درجه‌های تانویه، نقطه‌های شیبکایی، جای خالی اکسید، اندامی درنگ تخلخل و ترکم، استحالت منظم، نامنظم یا گروه استحالت‌های دیگر و فازهای مرزی و دانای، عوامل مولار بر فاکتور کیفیت و تلفقات درکلریک حسن‌نماه[5 و 14]. این افزایش چگالی و کاهش تخلخل به عنوان یک نقطه ساختاری و فاز ای یک خواد درکلریک ضعیف، نشان‌دهنده ساختاری و قلیای یک خواد درکلریک بیش می‌رود و از ناحیه‌ای که بیشترین مقدار خواد در یک کریستال کامل و بدون نقطه به دست می‌آید[2]. این روند، روند مشابه به نظر می‌رسد. به علاوه عدم تعدادی که در جدول (2) مقادیر فرکانس تشکیل، میزان جذب در فرکانس مذکور به‌همراه باند فرکانس تشکیل، تلفقات درکلریک که مناسب با عکس Qx, Qy آورده شده است. همان‌گونه که مشاهده شده که می‌تواند در نمونه‌های مختلف، فرکانس تشکیل به عنوان یک پارامتر داشته است.

شکل 3- شکل و توزیع اندازه دانه در نمونه‌ها (الف) و (ب) درصد اکسید مس.
جدول ۲- مقادیر پارامترهای شبکه و حجم سول و واحد نموده‌ها

| نموده |
| --- | --- | --- | --- | --- |
| | | | | |
| | | | | |
| | | | | |
| | | | | |

جدول ۳- مقادیر فرکانس تشبدی میزان جذب، به‌هنجاره‌ی تان‌ ندی و واحد نموده‌ها

<table>
<thead>
<tr>
<th>Q×f(GHz)</th>
<th>tanδ×10³</th>
<th>پهنای باند فرکانس (MHz)</th>
<th>(dB)</th>
<th>ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۶۲۷/۶</td>
<td>۲/۴۸</td>
<td>۲۷/۲۴</td>
<td>۲۳/۲۹</td>
<td>فاز ۲/۶۴۹۵</td>
</tr>
<tr>
<td>۳۶۳۸/۹</td>
<td>۳/۱۲</td>
<td>۳/۱۲</td>
<td>۳/۱۲</td>
<td>بند ذراتی</td>
</tr>
<tr>
<td>۷۹۳۸/۱۹</td>
<td>۱/۶۶</td>
<td>۱/۶۶</td>
<td>۱/۶۶</td>
<td>بند ذراتی</td>
</tr>
</tbody>
</table>

ب- نموده‌های آتیل شده

شکل (۲) الگوی پرتو پترو ایکس نموده‌های آتیل شده را نشان می‌دهد. همان‌گونه که مشاهده می‌شود، در این نموده‌ها نیز همانند نموده‌های سیبزیتی شده بند ذراتی یکپارچه و هم‌اکنون نموده‌های آتیل شده مشابه آن در بررسی‌های دقیق‌تری این نموده‌ها نیز فاز ثانویه‌ای حاوی Zn۲+ و Cu۲+ یا CuZn۲+ شناسایی نشد. طی این فرآیند، کسید سار و ورشی به‌رتبه، زمان بیشتری برای تشکیل فاز مذاب در مزرعه و عمل‌کردن به عنوان گذار آورا دارد. این احتمال وجود دارد که در رنگدانه بطور کامل عمل نشده باشد و نداشتن عملیات آتیل این آری به‌هیند بخشید. با این فرض می‌توان گفت که طی آتیل احتیال میزان فاز مذاب بیشتری تشکیل شده، اما در این حالت نیز دیل کم بودن فاقد مذاک تشکیل شده. این قابل شناسایی توسط XRD نیست.

بررسی‌ها نشان دادند که اعمال سیلک آتیل منجر به انتقال در راستای قطر نموده‌ها می‌شود. مقدار این انتقال برای نموده‌های مختلف، محاسبه‌شده در جدول (۴) ارایه شده است. این انتقال منجر به افزایش گچی در چگالی شده‌است. مقایسه شده در جدول (۴) ذکر شده است. نتایج قابل توجهی به‌نظر می‌آیند. تغییرات در درصد افزودنی است. افزایش درصد افزودنی تغییرات در درصد افزودنی است. افزایش درصد افزودنی تغییرات در درصد افزودنی است. افزایش درصد افزودنی تغییرات در درصد افزودنی است. افزایش درصد افزودنی...
نمونه‌های مختلف است. از این رو می‌توان گفت که گاز مذاب تشکیل شده با بهبود دیفروژن و انتقال مواد، می‌تواند در رشد دانه موثر واقع شود.

در تمامی نمونه‌ها، دانه‌ها هنکال‌هایی کروی داشتند و به صورت گونه‌دار بودند. با افزایش درصد افزودنی، درصد دانه‌های گونه‌دار کروی گسسته شد. همچنین درصد دانه‌های CuO مورد نمونه‌های بدون افزودنی و درصد وزنی CuO در نمونه‌های مختلف افزودنی بود. مقدار افزودنی که باید برای نمونه‌های مختلف در جدول (5) اورده شده است. همان‌گونه که مشاهده می‌شود، تفاوت‌های اندازی در مقدار محاسبه‌ی شده وجود دارد. با توجه به تعداد بسیار کم دانه‌هایی که در هر نمونه‌های مختلف فاقد، این حالات در مورد آنها نشان دهنده افزایش دیفروژن است. از این رو می‌توان گفت که گاز مذاب تشکیل شده با بهبود دیفروژن و انتقال مواد، می‌تواند در رشد دانه موثر واقع شود.

در تمامی نمونه‌ها، دانه‌ها هنکال‌هایی کروی داشتند و به صورت گونه‌دار بودند. با افزایش درصد افزودنی، درصد دانه‌های گونه‌دار کروی گسسته شد. همچنین درصد دانه‌های CuO مورد نمونه‌های بدون افزودنی و درصد وزنی CuO در نمونه‌های مختلف افزودنی بود. مقدار افزودنی که باید برای نمونه‌های مختلف در جدول (5) اورده شده است. همان‌گونه که مشاهده می‌شود، تفاوت‌های اندازی در مقدار محاسبه‌ی شده وجود دارد. با توجه به تعداد بسیار کم دانه‌هایی که در هر نمونه‌های مختلف فاقد، این حالات در مورد آنها

جدول 2- مقادیر افتقاء در راستای قطر و چگالی برای نمونه‌های آئل شده.

<table>
<thead>
<tr>
<th>چگالی (g/cm³)</th>
<th>ترکیب</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/824</td>
<td>بدون افزودنی 1/5 درصد وزنی اکسید سد</td>
</tr>
<tr>
<td>3/976</td>
<td>1/5 درصد وزنی اکسید سد</td>
</tr>
<tr>
<td>4/710</td>
<td>2/5 درصد وزنی اکسید سد</td>
</tr>
</tbody>
</table>

مقایسه شدت پیک‌های CuO در نمونه‌های مختلف است. از این رو می‌توان گفت که فاز مذاب تشکیل شده با بهبود دیفروژن و انتقال مواد، می‌تواند در رشد دانه موثر واقع شود.
شکل 5- شکل و توزیع اندازه دانه در نمونه‌های آنیل شده: (الف) 1/5 و (ب) 2/5 درصد اکسید مس.

جدول 5- مقادیر پارامتر بیان نمونه‌های آنیل شده.

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>تعداد اکسید مس</th>
<th>وزنی اکسید مس</th>
<th>1/5 درصد وزنی اکسید مس</th>
<th>2/5 درصد وزنی اکسید مس</th>
</tr>
</thead>
<tbody>
<tr>
<td>بدون افزودن</td>
<td>0/0</td>
<td>0/0</td>
<td>1/5</td>
<td>2/5</td>
</tr>
<tr>
<td>1/8 24/6</td>
<td>0/0</td>
<td>0/0</td>
<td>1/5</td>
<td>2/5</td>
</tr>
<tr>
<td>1/8 51/5</td>
<td>0/0</td>
<td>0/0</td>
<td>1/5</td>
<td>2/5</td>
</tr>
<tr>
<td>1/8 61/8</td>
<td>0/0</td>
<td>0/0</td>
<td>1/5</td>
<td>2/5</td>
</tr>
</tbody>
</table>

توجه کنید که مقادیر نمونه‌های مختلف آنیل شده توسط طولانیتر آنیل است. در جدول 5 مقادیر فرکانس تشدید، میزان جذب، بهنام فرکانس تشدید، لغات دی‌الکتریک و نمونه‌های آنیل شده اورده شده‌اند. این مقادیر نشان می‌دهد که فرکانس تشدید برای نمونه‌های مختلف آنیل شده بسیار نیست و مشاهده شد، می‌توان دلیل این تفاوت کم را پیان کرد. به نظر می‌رسد با توجه به اینکه در سیستم‌های سرامیکی نفوذ به بندی صورت می‌گیرد، زمان و دمای مورد استفاده به منظور مطالعه فراوان اثر برای رخداد کامل پاخت و یا مقادیر قابل توجه از آن کم‌رده است و تعیین دقیق آن نیازمند زمان‌های طولانی‌تر آنیل است.

توجه کنید که مقادیر نمونه‌های مختلف آنیل شده توسط طولانیتر آنیل است. در جدول 5 مقادیر فرکانس تشدید، میزان جذب، بهنام فرکانس تشدید، لغات دی‌الکتریک و نمونه‌های آنیل شده اورده شده‌اند. این مقادیر نشان می‌دهد که فرکانس تشدید برای نمونه‌های مختلف آنیل شده بسیار نیست و مشاهده شد، می‌توان دلیل این تفاوت کم را پیان کرد. به نظر می‌رسد با توجه به اینکه در سیستم‌های سرامیکی نفوذ به بندی صورت می‌گیرد، زمان و دمای مورد استفاده به منظور مطالعه فراوان اثر برای رخداد کامل پاخت و یا مقادیر قابل توجه از آن کم‌رده است و تعیین دقیق آن نیازمند زمان‌های طولانی‌تر آنیل است.

توجه کنید که مقادیر نمونه‌های مختلف آنیل شده توسط طولانیتر آنیل است. در جدول 5 مقادیر فرکانس تشدید، میزان جذب، بهنام فرکانس تشدید، لغات دی‌الکتریک و نمونه‌های آنیل شده اورده شده‌اند. این مقادیر نشان می‌دهد که فرکانس تشدید برای نمونه‌های مختلف آنیل شده بسیار نیست و مشاهده شد، می‌توان دلیل این تفاوت کم را پیان کرد. به نظر می‌رسد با توجه به اینکه در سیستم‌های سرامیکی نفوذ به بندی صورت می‌گیرد، زمان و دمای مورد استفاده به منظور مطالعه فراوان اثر برای رخداد کامل پاخت و یا مقادیر قابل توجه از آن کم‌رده است و تعیین دقیق آن نیازمند زمان‌های طولانی‌تر آنیل است.

توجه کنید که مقادیر نمونه‌های مختلف آنیل شده توسط طولانیتر آنیل است. در جدول 5 مقادیر فرکانس تشدید، میزان جذب، بهنам فرکانس تشدید، لغات دی‌الکتریک و نمونه‌های آنیل شده اورده شده‌اند. این مقادیر نشان می‌دهد که فرکانس تشدید برای نمونه‌های مختلف آنیل شده بسیار نیست و مشاهده شد، می‌توان دلیل این تفاوت کم را پیان کرد. به نظر می‌رسد با توجه به اینکه در سیستم‌های سرامیکی نفوذ به بندی صورت می‌گیرد، زمان و دمای مورد استفاده به منظور مطالعه فراوان اثر برای رخداد کامل پاخت و یا مقادیر قابل توجه از آن کم‌رده است و تعیین دقیق آن نیازمند زمان‌های طولانی‌تر آنیل است.

توجه کنید که مقادیر نمونه‌های مختلف آنیل شده توسط طولانیتر آنیل است. در جدول 5 مقادیر فرکانس تشدید، میزان جذب، بهنام فرکانس تشدید، لغات دی‌الکتریک و نمونه‌های آنیل شده اورده شده‌اند. این مقادیر نشان می‌دهد که فرکانس تشدید برای نمونه‌های مختلف آنیل شده بسیار نیست و مشاهده شد، می‌توان دلیل این تفاوت کم را پیان کرد. به نظر می‌رسد با توجه به اینکه در سیستم‌های سرامیکی نفوذ به بندی صورت می‌گیرد، زمان و دمای مورد استفاده به منظور مطالعه فراوان اثر برای رخداد کامل پاخت و یا مقادیر قابل توجه از آن کم‌رده است و تعیین دقیق آن نیازمند زمان‌های طولانی‌تر آنیل است.
جدول 6- مقادیر فرکانس تشدید، میزان جذب، بهداشت باند فرکانس تشدید، نطفه دی الکتریک، افزایش دهد. اما تکنیکی که در مورد افزودن اکسید سنگ وجود دارد این است که پویوند طیفی انجام داده توجهی آنها با ZST پویوند چهار طیفی. جای خالی اکسیدن و افزایش دهد و به همراه جای خالی 5 است که جایگزینی آن، از تعداد جای خالی اکسیدن که در پویوند و یا کاهش جای خالی اکسیدن، پویا هیچ گونه نقشی ندارند. اما اعمال سیگمای آنل می تواند این نقش را کاهش دهد. ورود اکسیدن از اتمسفر و نفوذ آن به داخل دمای بالا و زمان طولانی طی آنل می تواند کاهش در مقدار این نقش را به دنبال داشته باشد.

عوامل بر کاهش نطفه دی الکتریک و افزایش عنوان تغییرات کمی، فرابند آنل، بکنونیت شدند اکتشاف پایه اکسیدن را به دنبال دارد. برای به دست آوردن بهترین و نقطه تشدید کننده، آزمایش مناسب همچنین نشان داد که نتیجه اولی دارد. گذرانند اکتشاف پایه در ادامه انواع اکتشاف‌های کالورمغناطیسی از آن‌ها به دنبال می‌گردد. تشکیل ناباید در اکتشاف‌ها دیگری از ماهیت‌های جذاب جذاب اکتشاف‌های کالورمغناطیسی در نواحی اکتشاف‌های کالورمغناطیسی با پیش به مقدار صفر دی‌پیل نزدیکی باشد. بررسی انواع دی الکتریک مربوط به نمونه‌های بیش از آنل نشان داد که در نمونه حاوی 1/5 درصد وزنی از افزودن، یک ضعیف‌تری در فرکانس‌های حدود 500 MHz از فرکانس تشدید وجود دارد. به‌طور نمونه‌هایی در باند فرکانس تشدید، نطفه دی الکتریک را...
ب
شکل ۶-الگوهای جذب نمودهای الکتریکی حاوی ۱/۵ و ب) ۲/۵ درصد وزنی اکسیژن مس در حالت پیش از آنلاین.
شکل (b) 7- اگرهای جذب نمونه‌های الف) حاوالی (1/5 و ب) 2/5 درصد وزنی اکسید سن در حالت آبی شده.

اما اگرهای به دست آمده از نمونه‌های آبی شده نشان داد که در نمونه حاوالی 1/5 درصد وزنی از افزودنی پیک مذکور حذف شده است. همچنین، ملاحظه شد که نوسانات علامه نوساناتی نیز در اطراف پیک وجود دارد که این بدلیل است که مورد نمونه حاوالی 2/5 درصد وزنی از افزودنی نیز مشاهده شد، شکل (8).
نتیجه گیری

تأثیر اکسید مس به عنوان افزودنی بر خواص مایکروسیمو، مایکروآین در مایکروافک و مایکرومترهای کاملاً هم‌زمانی به دست آمد.

واژه‌نامه

1. binder

2. flux former

مراجع

