بررسی تأثیر درجه اسیدی محلول سویسترا، دمای گرمخانه‌گذاری و دمای کلسینه کردن
بر تولید باکتریایی هیدروکسی آپاتیت نانو‌اختار

بابک مستنی، محمدحسین فتحی، محمد شیخ زینالدین و صبحه سلیمانیانزاد
دانشکده مهندسی مواد دانشگاه صنعتی اصفهان
گروه علوم و صنایع غذاهای دانشکده کشاورزی دانشگاه صنعتی اصفهان

چکیده - روش رسوب دهی زیستی از جمله روش‌های توین تولید هیدروکسی آپاتیت نانو‌اختار است. در این پژوهش از یک سویه بوومی باکتریایی سراسی به منظور تولید بوتر هیدروکسی آپاتیت نانو‌اختار استفاده شد. تولید بوتر هیدروکسی آپاتیت در درجه‌های اسیدی (pH) گوناگون محلول سویسترا و مانند مدل دیگری گرسنگی که انجام سریع و پایدار هیدروکسی آپاتیت تولید شده پس از انجام عملیات کلسینه کردن در دماهای مختلف با استفاده از تکنیک‌های مختلف میکروسکوپی الکترونی و میکروسکوپ الکترونی غیری، پروسه برخی از آن‌ها و آزمون‌های فیزیکی مادون قرمز یا تبدیل قریب به تبدیل بالقوه تحت ارزیابی و بررسی‌های گوناگون قرار گرفت. نتایج نشان داد که میزان تنش‌بندی تولید پودر هیدروکسی آپاتیت هنگامی که درجه اسیدی محلول سویسترا برای بروز رفت و دمای گرمخانه‌گذاری ۳۷ درجه سانتی‌گراد باشد، سری‌تر گرفته است. همچنین مشاهده شد که با انجام عمل کلسینه کردن در دمای ۴۰۰ درجه سانتی‌گراد، پودر هیدروکسی آپاتیت نانو ذره با بلورینگی مناسبتر و آگلومراتیشن کمتر در مسیره به روش‌های معمول ساخت هیدروکسی آپاتیت نانو‌اختار تولید شده است.

واژگان کلیدی: هیدروکسی آپاتیت، رسوب‌دهی زیستی، سراسی، نانو‌اختار، زیستی
Effects of Substrate Solution pH, Incubation Temperature, and Calcination Temperature on Bacterial Synthesis of Nano-Crystalline Hydroxyapatite

B. Mostaghaci, M. H. Fathi, M. Sheikh-Zeinoddin, and S. SoleimanianZad
Department of Materials Engineering, Isfahan University of Technology
Department of Food Science and Engineering, College of Agriculture, Isfahan University of Technology

Abstract: Biomineralization is among the new methods for the synthesis of nanostructured Hydroxyapatite (nHA). In this study, nanostructured HA was synthesized using an Iranian strain of Serratia. The powder was synthesized at different pH levels of the substrate solution and at different incubation temperatures. Calcination treatment processes were performed at different temperatures. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR) techniques were utilized to characterize the obtained powders. Results showed that maximum powder production occurred at a substrate solution pH level of 8 and an incubation temperature of 37 ºC. After calcination treatment at 600 ºC, nano-particle HA powder was synthesized. The resulting powder was found to have a higher crystallinity and a lower degree of agglomeration compared to the nanostructured nHA synthesized using conventional methods.

Keywords: Hydroxyapatite, Biomineralization, Serratia, Nanobiotechnology.

1- مقدمه

کاربرد یزیکی گروه سرمایه‌های کلسیم-فساتن از جمله هیدروکسیآپتایت، به‌خصوص از تحقیقات پیرامون تولید بیومود مورد استفاده در ساخت یا تثبیت ژنتیکی کاشت‌های مورد استفاده در بدن، از خواف عمده به دلیل شیب‌های ترکیب شیمیایی هیدروکسیآپتایت به ترکیب شیمیایی استخوان است [1] از جمله کاربردهای هیدروکسیآپتایت پوشش‌های کاشت‌های استخوان مورد استفاده در بدن، بازسازی و خلق دوباره بافت استخوانی، ساخت کاشتهای استخوانی و ساخت درست‌های مهندسی بافت استخوان است [2-3].

بر خلاف شیاهت ترکیب شیمیایی، خواص مکانیکی هیدروکسیآپتایت مصنوعی در مقایسه با استخوان سیمانی ضعیف است. به‌خصوص معدنی استخوان همچنین زیست فعال بالاتری را در مقایسه با هیدروکسیآپتایت مصنوعی از خود نشان می‌دهد. پژوهش‌ها نشان داده که هیدروکسیآپتایت نانومتری خواص مطلوبی در مقایسه با نمودهای میکروئی ارائه می‌دهد. پودرهای هیدروکسیآپتایت نانو‌ساختار قابلیت نفوذ‌کننده مناسب و چگالی نسبی بالاتری را نشان می‌دهد [4] که موجب

استقلال: سال 27، شماره 2، اسفند 1387

214
خشوف زنگها با استفاده از ذرات هیدروکسی آپاتیت نانوتوری انجام شده است. بنابراین داده شده است که هیدروکسی آپاتیت نانوتوری می‌تواند مقاومت زنگ‌کشی را فشرده کرده و به عنوان حامل مناسب برای انتقال قطعه زنگ‌کشی به داخل سلول عمل کند. همچنین با افزایش قطعه زنگ‌کشی بر روی هیدروکسی آپاتیت نانوتوری نسبت به سپاری از حاملهای دیگر راحت‌تر است [11 و 12].

در ساخت قطعات کاستین در بدن جنس هیدروکسی آپاتیت نانوتوری خصوصاً مکاتبه هیپو دور سطح بیشتر قرار می‌گیرد که در نتیجه ایجاد شکل یا میزان پایین آگلомерات درون برخورد باشد. این پارامترها در کاربرد هیدروکسی آپاتیت به عنوان حامل ماده زنگ‌کشی نیز بسیار مهم است. بنابراین این است که در فرآیند انتقال ذرات هیدروکسی آپاتیت نانوتوری هنگام بالا بردن قطعه قابل حصول است که میزان آگلомерات شدن ذرات در پایین‌ترین حد قرار داشته باشد [11 و 13].

ناکنون روش‌های گوناگونی برای تولید هیدروکسی آپاتیت نانوتوری معرفی شده است. روش‌های سایر-ژل، روش اکسید شیمیایی و سنتز مکاتبی-شیمیایی از این جمله اند [14-15]. با این حال در اکثر آن روش‌ها ذرات پودر تولید شده از نظر اندازه و شکل یکسانی ناخواسته و به علت اثرات مطلق بالای ذرات نانوتوری، میزان آگلомерات شدن بالای ذرات به وقوع می‌پیوندد [16].

از جمله روش‌های نوین تولید هیدروکسی آپاتیت نانوتوری رسوب‌دهی زیستی است. و آمیزه‌سازی دهی زیستی به فرایندهای طبیعی اشاره دارد که طی آنها موجودیت زنده از مواد آلی و غیر آلی ماده جدیدی را تولید می‌کند. با کنترل فرآیند رسوب دهی زیستی می‌توان مواد معدنی با ساختار و ترکیب مطلوب به دست آورد [16 و 17]. در پژوهشی که در [18] از سویه خاصی از باکتری سرایا برای تولید بالای آزمایش فسفات نانوتوری تولید شده است. این روش‌ها به نشان دادند که هیدروکسی آپاتیت

ولی‌های دارای ذرات با اندازه و شکل یکسانی اگلوترپ و میزان پایین آگلومرات

أکلی‌های شدن است [18].

با توجه به موارد بالا توجه هیدروکسی آپاتیت تولید شده توسعه روش باکتریایی در این پژوهش تولید پودر هیدروکسی آپاتیت نانوتوری با استفاده از یک مایع بومی باکتری سراسری مورد بررسی قرار گرفت. در ادامه تاثیر درجه اسیدی (pH) محلول و وضعیت دمای گرماتون‌گذاری و دمای عملیات کلینیکی کردن بر میزان تولید، بلدوریکی و اندمازه دانه یوکر توکوزی بررسی شد.

روش آزمون

1- آزمون تولید آزمون سفاف‌ساز

به منظور بررسی قابلیت تولید آزمون سفاف‌ساز در این باکتری از روش مورد استفاده توسعه‌ی بهبود همراه با تغییرات جزیی در نحوه انجام آزمون استفاده شد. فعالیت آزمون آزاد شده در محیط کشت و آزمون متصل به دوازده سلولی در ردیه اسیدی 6 و 8 به صورت جداکت مورد بررسی قرار گرفت. به‌دست منظور از سوی‌های پارا–نیتروفیل سفاف-ساز (سیگما، آمریکا) استفاده شد. پس از گرماتون‌گذاری در دمای 37 درجه سانتی‌گراد جذب نوری نمونه‌ها در طول موج 400 نانومتر توسط روشن‌ساز استروفلوم فیشینگ فیت شد و اندازه‌گیری آزمون سفاف‌ساز از تصفیه جذب نوری نمونه بر تعداد باکتری‌ها محاسبه شد. کلیه آزمون‌های با سه تکرار انجام شد. شمارش باکتری‌ها در هر آزمون توسط روش شمارش کلئوهای تشکل شده بر روی صفحه 1 به تهیه رفتنه‌های مناسب از محلول شده است. بنابراین داده شده است که هیدروکسی آپاتیت نانوتوری
سوسپنسیون حاصل در دماهای 30 و 37 درجه سانتی‌گراد به مدت چهارده روز همراه با هواهی به سرعت 180 دور در دقیقه گرم‌مانگ‌گذاری شد.

2- 3- تولید رسوبر

مشخصات تولیدی:
- محصول حصول برای ترمینال‌سازی (EM) (XRD، کرپسکوب الکترونی و ریشی)، (SEM) (XRD، کرپسکوب الکترونی و ریشی) و (TEM) (XRD، کرپسکوب الکترونی و ریشی) با نسبت‌های شاهد (1:2) تهیه شد. سپس به ازای هر یک لیتر محلول سویسترا یک لیتر مایع کشت آبی کشت می‌کرد. از نقاطی در طول مدت یک شب کشت داده شد. سپس به ازای هر یک لیتر محلول سویسترا یک لیتر مایع کشت آبی کشت. این تریال با استفاده از ابزارهای قدرت و تحت هواهی أكثر سرعت 150 دور در دقیقه به مدت یک شب کشت گرده و خاک بر روی محیط کشت آغاز می‌گردد.

3- 1- آماده‌سازی محلول سویسترا

برای تهیه محلول مورد استفاده به مقدار تولید هیدروکسی آبانتی آبانتی مول (CaCl2) (مرک، آلمان) به همراه 20 میلی‌مول نتری‌سید سیترات (مرک، آلمان) و 25 میلی‌مول گلیسرول 2- فسفات (مرک، آلمان) در محلول 25 میلی‌مول فسفر الیوریز (مرک، آلمان) حل شد. سپس این محلول توسط اتوکلاو استریل شد.

3- 2- نهایی و شستشو نهایی باکتری‌ای

باکتری سراغان با کتاب‌نامه‌ی سویسترا 1887 PTCC کشت وشیبی (مرک، آلمان) در دمای 30 درجه سانتی‌گراد و تحت هواهی با سرعت 150 دور در دقیقه به مدت یک شب کشت داده شد. سپس به ازای هر یک لیتر محلول سویسترا یک لیتر مایع کشت آبی کشت. این تریال با استفاده از ابزارهای قدرت و تحت هواهی أكثر سرعت 150 دور در دقیقه به مدت یک شب کشت گرده و خاک بر روی محیط کشت آغاز می‌گردد.

4- 3- تحلیل آماری

تحلیل‌های آماری به کمک نرم‌افزار تحلیل آماری SPSS (برنامه‌ای آمار) انجام شد. نتایج حاصل از انجام آزمونهای بررسی توزیعی آزمون و اندازه‌گیری میزان رسوبر توسط روش تحلیل یک‌پلاک طرفه و رایانه‌ای (مورد بررسی قرار گرفت. تفاوت‌ها (One-way ANOVA)
سالولی صورت می‌پذیرد (15). وجود مقدار زیاد آزاد شده در محیط کشت می‌تواند سبب شود که هیدروکسی آپتینت میکرووی گلوگرده شده در محیط کشت تولید شود. به دلیل بالاتر بودن معادار آنزیم سرفان در دو دویل سالولی و بیانی‌تر بودن معادار آنزیم سرفان این ساری‌های باکتریایی سارانس (1187) نسبت به دو سویه‌های دیگر در مسیره‌ی آسیدی برابر هشت، این سویه به منظور تولید باکتریایی هیدروکسی آپتینت نانو‌تری انتخاب شد.

۳-۱- بررسی فعالیت آنزیم باکتری

نتایج مربوط به اندوزه‌ی کلی فعالیت آنزیم سرفان در دویل سالولی سویه‌های بومی باکتریایی سارانس (۱) نشان داده شده است. مشاهده می‌شود که تمامی این سویه‌های باکتریایی از فعالیت آنزیم سرفان برخوردارند. این نتیجه با پژوهش سانیا و همکارانش که نشان دادند برخورد از فعالیت آنزیم سرفان خاصیت غلیب باکتری‌های عضو خانواده انتروباکتریاس (از جمله سارانس) است در تطابق است (۲۲).

همان‌گونه که در شکل (1) مشاهده می‌شود فعالیت آنزیم میان بیرای دویل سالولی بیشتر باکتریایی سارانس سویه‌های در پویا قرار گرفته به طور معاداری بالاتر از فعالیت آنزیم دو سویه‌های باکتریایی گیگر است (p≤۰.۰۵). از طرف دیگر، همان‌گونه که در شکل (2) مشخص است فعالیت آنزیم آزاد این سویه‌های باکتریایی در دویل سالولی بیشتر به طور معاداری کمتر از فعالیت آنزیم دو سویه‌های گیگر است (p≤۰.۰۵). دولید هیدروکسی آپتینت به‌صورت نانو‌تری انتخاب شاهد بر روی دویل سالولی باکتری و در شبکه‌ی پلی‌مری خارج

شکل ۲- اندیس فعالیت آنزیم آزاد در دو درجه اسیدی شر و هشت در سالولی سویه‌های سیاهی باکتری سارانس (پرای باکتری سارانس مارسنس 1187) نسبت به دو درجه اسیدی شر (*) و هشت (**) تفاوت معنی دار مشاهده شد (p≤۰.۰۵).

شکل ۱- اندیس فعالیت آنزیم میان بیرای دویل سالولی در دو درجه اسیدی شر و هشت در سالولی سویه‌های بومی باکتری سارانس (پرای باکتری سارانس مارسنس 1187) نسبت به دو درجه اسیدی شر (*) و هشت (**) تفاوت معنی دار مشاهده شد (p≤۰.۰۵).
قابلیت آنتی‌بیوتیک پودر در دمای‌های برابر 0، 8، 15، 37 درجه سانتی‌گراد با شدت متوسطی (0.05 می‌باشد.

شکل ۵- مقایسه میزان کگوی پراش پودر تولید شده در پژوهش قبلی [13] (البته پودر تولید شده در محلول سوپرگوا با دمای ۷ درجه سانتی‌گراد) و پودر تولید شده در محلول سوپرگوا با دمای ۳۷ درجه سانتی‌گراد (ج)

گرمخانه‌گذاری پراش (۳۷ درجه سانتی‌گراد) (۲) میزان پودر تولیدی در دمای‌های برابر 8 و 15 درجه‌های اسیدی است با شدت متوسطی (0.05 می‌باشد. با این حال میزان پودر تولیدی در این دو درجه اسیدی با یکدیگر تفاوت معناداری ندارند. نتیجه مهم این است که در دمای گرمخانه‌گذاری پراش با ۳۷ درجه سانتی‌گراد میزان تولیدی پودر در کلیه درجه‌های اسیدی به طور چشمگیری بالاتر است. گرمخانه‌گذاری پراش با ۳۷ درجه سانتی‌گراد شکل (۲) میزان پودر تولیدی در دمای ۸ درجه‌های اسیدی است با شدت متوسطی (0.05 می‌باشد.

شکل ۴- تاثیر درجه اسیدی محلول سوپرگوا بر میزان تولید رسوپ در دمای گرمخانه‌گذاری پراش با ۷ درجه سانتی‌گراد. در دمای ۸ درجه‌های اسیدی پراش با ۸ و ۸.۵ میزان تولید رسوپ نسبت به سایر درجه‌های اسیدی هم در میزان تولید رسوپ نسبت به سایر درجه‌های اسیدی H.
شکل ۶ - مقایسه اگوی پراش پرتو ایکس نمونه‌های تولید شده در محلول سوئیسرا با درجه‌های اسیدی مختلف و گرم‌خانه گذاری شده در دمای ۷۳ درجه سانتی‌گراد.

شکل ۷ - مقایسه اگوی پراش پرتو ایکس نمونه‌های تولید شده در محلول سوئیسرا با درجه‌های اسیدی برابر هست و گرم‌خانه‌گذاری شده در دما‌های گوناگون.

شکل ۶: تأثیر درجه اسیدی محلول سوئیسرا را بر اگوی پراش پرتو ایکس پودر تولیدی در دما اگوی گذاری برای درجه سانتی‌گراد نشان می‌دهد. هم‌اکنون که مشاهده می‌شود در این حالت در تمام درجه‌های اسیدی شکاف‌های فاز هیدروکسی آبی‌تیت ظاهر شده‌اند. با این حال حداکثر تیزی و شدت پیکها در درجه‌های اسیدی ۸ و ۸.۵ رخ می‌دهد. این امر احتمالاً به دلیل فعالیت بالاتر آنزیم فسفاتاز در این درجه‌های اسیدی نسبت به درجه‌های اسیدی دیگر است.

شکل ۷: اگوی پراش پرتو ایکس ماده تولیدی در دماهای گرم‌خانه گذاری ۳۰ و ۳۷ درجه سانتی‌گراد مقایسه سانتی‌گراد، طیف‌های ب و ج و مقایسه آنها با الگوی پراش پرتو ایکس نمونه تولید شده در پژوهش سامونز و همکارانش (طیف الف) [۱۳] قابل انجام عمل کلیسینه کردن را نشان می‌دهد. مشاهده می‌شود که الگوی پراش طبیعی بسیار خوبی با یکدیگر نشان می‌دهند و پیک‌های مربوط به فاز هیدروکسی آبی‌تیت در هر سه الگوی پراش از نظر زوها و شدت نسبی پیک‌ها به طور مطلوبی با یکدیگر یکسانی دارند. با این حال روابط تولیدی (طیف‌های ب و ج) از بلوپیراک کافی برخورد نیست. بنابراین شدن اختلاف مناسب از عمل کلیسینه کردن از خواص جالب توجه روش تولید باکتریایی است که می‌تواند سبب شود ناپایدار تولید در دما کلیسینه کردن کمتری نسبت به پودرهای تولید
شکل 8- مقابله میان نمونه کلسیم نده و نمونه‌های کلسیم شده در دمای 2500، 3000، 3500 و 4000 درجه سانتی‌گراد. درجه اسیدی محلول سوسیسترا برای هشت و دمای گرمخانه‌گذاری 37 درجه سانتی‌گراد است.

جدول 1- مشخصات پیکه‌ای مورد استفاده برای تنش میزان بلوری شدن نمونه‌های کلسیم شده در دمای 600 درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>دمای گرمخانه‌گذاری</th>
<th>Iₜ₀₀₀</th>
<th>Vₐ₁₅₀₀₀₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>درجه سانتی‌گراد</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1188200</td>
<td>3749200</td>
</tr>
<tr>
<td>30</td>
<td>1582510</td>
<td>3473200</td>
</tr>
<tr>
<td>33</td>
<td>1812510</td>
<td>3752300</td>
</tr>
<tr>
<td>36</td>
<td>2022510</td>
<td>3956300</td>
</tr>
<tr>
<td>39</td>
<td>2232510</td>
<td>4159300</td>
</tr>
<tr>
<td>42</td>
<td>2442510</td>
<td>4362300</td>
</tr>
<tr>
<td>45</td>
<td>2652520</td>
<td>4565300</td>
</tr>
<tr>
<td>48</td>
<td>2862520</td>
<td>4768300</td>
</tr>
<tr>
<td>51</td>
<td>3072520</td>
<td>4971300</td>
</tr>
<tr>
<td>54</td>
<td>3282520</td>
<td>5174300</td>
</tr>
<tr>
<td>57</td>
<td>3492520</td>
<td>5377300</td>
</tr>
<tr>
<td>60</td>
<td>3702520</td>
<td>5580300</td>
</tr>
<tr>
<td>63</td>
<td>3912520</td>
<td>5783300</td>
</tr>
<tr>
<td>66</td>
<td>4122520</td>
<td>5986300</td>
</tr>
<tr>
<td>69</td>
<td>4332520</td>
<td>6189300</td>
</tr>
<tr>
<td>72</td>
<td>4542520</td>
<td>6392300</td>
</tr>
<tr>
<td>75</td>
<td>4752520</td>
<td>6595300</td>
</tr>
<tr>
<td>78</td>
<td>4962520</td>
<td>6798300</td>
</tr>
<tr>
<td>81</td>
<td>5172520</td>
<td>6901300</td>
</tr>
<tr>
<td>84</td>
<td>5382520</td>
<td>7104300</td>
</tr>
<tr>
<td>87</td>
<td>5592520</td>
<td>7307300</td>
</tr>
<tr>
<td>90</td>
<td>5802520</td>
<td>7510300</td>
</tr>
<tr>
<td>93</td>
<td>6012520</td>
<td>7713300</td>
</tr>
<tr>
<td>96</td>
<td>6222520</td>
<td>7916300</td>
</tr>
<tr>
<td>99</td>
<td>6432520</td>
<td>8119300</td>
</tr>
<tr>
<td>102</td>
<td>6642520</td>
<td>8322300</td>
</tr>
</tbody>
</table>

نماهای پیکه‌ای مشخصه موجود در الگوی پرای شی-Yearه‌ای آتات استاندارد (۲۳) در الگوی پرای نمونه کلسیم شده ظاهر شده‌اند. ضمن اینکه هیچ یکی مشخصه دیگری مربوط به سایر فازها نظر نشده‌است. کلسیم فسفات و کلسیم کستین مشاهده نمی‌شود. بر اساس استاندارد انجمن مواد و آزمون آمریکا استاندارد شماره 1990-88-89 (۲۴) ترکیب شیمیایی نمای قابل بروز هیدروکسی آتات است خصوصاً اینکه پرای پرتو ایکس نمونه‌های کلسیم شده در دمای ۶۰۰ درجه سانتی‌گراد بر اساس استاندارد انجمن مواد و آزمون آمریکا هیدروکسی آتات بلوری محسوب می‌شوند.

شکل ۹- مثال عملیات کلسیم کردن با الگوی پرای پرتو ایکس پودر تولید شده در درجه اسیدی محلول سوسیسترا برای هشت و گرمخانه‌گذاری شده در دمای ۷۲ درجه سانتی‌گراد نشا ساخته شده به دلیل استفاده باکتری‌ها روسوب کلسیم فسفات فرضی نشکل در محلول را به وسیله آنزیم فسفات رها شده در محیط کشت تبدیل نمی‌کند. در شکل ۸ (۸) نتایج عملیات کلسیم کردن با الگوی پرای پرتو ایکس پودر تولید شده در درجه اسیدی محلول سوسیسترا برای هشت و گرمخانه‌گذاری شده در دمای ۷۲ درجه سانتی‌گراد نشا ساخته شده به دلیل استفاده باکتری‌ها روسوب کلسیم فسفات فرضی نشکل در محلول را به وسیله آنزیم فسفات رها شده در محیط کشت تبدیل نمی‌کند.

شکل ۱۰- نتایج عملیات کلسیم کردن با الگوی پرای پرتو ایکس پودر تولید شده در درجه اسیدی محلول سوسیسترا برای هشت و گرمخانه‌گذاری شده در دمای ۷۲ درجه سانتی‌گراد نشا ساخته شده به دلیل استفاده باکتری‌ها روسوب کلسیم فسفات فرضی نشکل در محلول را به وسیله آنزیم فسفات رها شده در محیط کشت تبدیل نمی‌کند.

شکل ۱۱- نتایج عملیات کلسیم کردن با الگوی پرای پرتو ایکس پودر تولید شده در درجه اسیدی محلول سوسیسترا برای هشت و گرمخانه‌گذاری شده در دمای ۷۲ درجه سانتی‌گراد نشا ساخته شده به دلیل استفاده باکتری‌ها روسوب کلسیم فسفات فرضی نشکل در محلول را به وسیله آنزیم فسفات رها شده در محیط کشت تبدیل نمی‌کند.
همانگونی که در تصویر طیف‌های مادون قرمز و همچنین جدول (2) مشخص است در طیف مادون قرمز هر نمونه‌ها (OH) هیدرووکسی آبی‌انی استاندارد (67) و -(PO4)3- و -(CO3)2- در طیف هر نمونه مشاهده می‌شود. در برخی منابع ذکر شده است که هیدرووکسی آبی‌انی شیمیایی بین‌هاشی به CO32- و HPO42- بر اساس استاندارد هیدرووکسی آبی‌انی وجود ندارد HPO42- به نوبت او طیف مادون قرمز با توجه به اندازه‌گیری نمونه تولید شده در دمای 100 درجه سانتی‌گراد را پس از تغییرات تغییرات در دمای 37 درجه سانتی‌گراد در محدوده بلورینگی هیدرووکسی آبی‌انی قرار دارد.

3-1. تعیین اندازه دانه
اندازه دانه پودر تولیدی در محلول سویسکر با درجه اسیدی برای هشی و دماهای هیدرووکسی‌گذاری گوناگون پس از انجام عمل کلسینه‌کردن در دمای 600 درجه سانتی‌گراد با استفاده از روش میکرون‌هال 25 نانومتر به دست آمد. این امر حاکی از این مسئله است که این اندازه دانه‌های هیدرووکسی آبی‌انی تولید شده به روش باکتریایی در گستره اندازه دانه‌های هیدرووکسی آبی‌انی (25) نانومتر (است 1).

3-2. آزمون طیف‌سنجی مادون قرمز با تبدیل فوریه
شکل‌های (9) و (10) طیف‌های مادون قرمز با تبدیل فوریه 221
جدول 2- پیکهای شاخص مربوط به الگوی طیف مادون قرمز با تبدیل فوریه نمونه هیدروکسی آپاتیت استاندارد [27] و نمونه‌های کلسیته نشده و کلسیته شده تولیدی.

<table>
<thead>
<tr>
<th>بیان شیمیایی</th>
<th>PO₄³⁻</th>
<th>OH⁻</th>
<th>HPO₄²⁻</th>
<th>PO₄³⁻</th>
<th>CO₃²⁻</th>
<th>H₂O</th>
<th>OH⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>نمونه استاندارد</td>
<td>555</td>
<td>434</td>
<td>555</td>
<td>434</td>
<td>555</td>
<td>434</td>
<td>555</td>
</tr>
<tr>
<td>نمونه کلسیته نشده</td>
<td>555</td>
<td>434</td>
<td>875</td>
<td>952</td>
<td>1050</td>
<td>1090</td>
<td>1090</td>
</tr>
<tr>
<td>نمونه کلسیته شده</td>
<td>555</td>
<td>434</td>
<td>875</td>
<td>952</td>
<td>1050</td>
<td>1090</td>
<td>1090</td>
</tr>
</tbody>
</table>

شکل 9- طیف مادون قرمز با تبدیل فوریه پودر هیدروکسی آپاتیت تولید شده.

شکل 10- طیف مادون قرمز با تبدیل فوریه پودر هیدروکسی آپاتیت تولید شده پس از کلسیته کردن در دمای 600 درجه سانتی‌گراد.
شکل 11- تصویر میکروسکوپ الکترونی روبشی از پودر هیدروکسی آپاتیت تولیدئی: افق) پیش از کلسینه کردن.
ب) پس از کلسینه کردن در دمای 600 درجه سانتی‌گراد

شکل 12- تصویر میکروسکوپ الکترونی عبوری از پودر هیدروکسی آپاتیت تولیدئی پس از انجام عمل کلسینه کردن در دمای 600 درجه سانتی‌گراد در دو زرگرمای متفاوت.

می‌شود که این امر به دلیل خروج گازهای حاصل از سوختن و تبخیر مواد آلی و توده زیستی همراه با نمونه است. این امر نتیجه منحصر به فرد حاصل از روش تولید باکتریایی است.

ب) انجام عمل کلسینه کردن در دمای 600 درجه سانتی‌گراد خوشه‌های آگلومه با اندازه تقریبی یک تا دو میکرومتر تشکیل می‌شود که نشان‌دهنده میزان پایین آگلومه شدن ذرات در این روش است. شکل (11-ب).

شکل 13- 5- 1- بررسی مورفولوژی و اندازه ذرات با استفاده از میکروسکوپ الکترونی روبشی شکل (11-الف و ب) تصاویر میکروسکوپ الکترونی روبشی از نمونه کلسینه نشده و کلسینه شده در دمای 600 درجه سانتی‌گراد را نشان می‌دهد. همان‌گونه که مشاهده می‌شود با انجام عمل کلسینه کردن از اندازه خوشه‌های آگلومه کاسته می‌شود.

استقلال، سال ۱۳۸۷، شماره ۲، استنف ۲۲۳
4- نتیجه‌گیری

پیروی‌های هیدروکسی آپاتیت نانوتی با استفاده از یک سوکس به‌کارگیری ساختار لوله‌ای فتوسنتز شد. در این هیدروکسی آپاتیت نانوتی با وجود میزان آلومینوم بودن برخی از انواع نیز نسبت به بودهای هیدروکسی آپاتیت تولید شده به روش‌های معمول یافته از پایین‌تر از درآمدهای نانوتی با همکنش با خواص مکانیکی این لولیت کرد. همچنین پیروی نانوتی در آپاتیت زیستی بوده و جویدیان بنیادهای آلی و در کاتر آن اندازه نانوتی در زمان افزایش زیست سازگاری و زیست فعالیت هیدروکسی آپاتیت تولیدی می‌شود.

به‌طور کلی می‌توان گفت که در محدودیت‌های موجود در مورد تولید نانوتی در مرحله ساختاری با درجه بهبود و کاهش گرمایش‌گذاری شده در این دمای 27 درجه سانتیگراد صورت گرفت. همچنین مشاهده شد که در این دمای 27 درجه سانتیگراد صورت گرفت.

در محلول سوسترا با درجه سانتیگراد گرمایش‌گذاری شده در این دمای 27 درجه سانتیگراد صورت گرفت. همچنین مشاهده شد که در این دمای 27 درجه سانتیگراد صورت گرفت.

برای استفاده از هیدروکسی آپاتیت به عنوان حامل محتوای زیستی در بدن ضروری است [11-21] مجموع این اعضا زیستی دهنده به‌همت ساخت پیروی نانوتی در آپاتیت با اندازه
پودر هیدروکسی آپاتیت تولید شده به روش زیستی انتخاب مناسب برای ساخت کاشتهای محور استفاده در پرزیکوک و دندانپزشکی و ترمیم و بازسازی ضایعات استخوانی است. با توجه به اندامه تانومتری ذرات پودر هیدروکسی آپاتیت تولیدی به نظر می‌آید که بتوان از آن در رساله محصولات دارویی و زیستی در بدن استفاده کرد.

مراجع

22. Satta, G., et al., “Phosphatase Activity is a Constant Feature of all Isolates of all Major Species of the Family Enterobacteriaceae,” Journal of Clinical