پیشنهاد یک جبران کننده مبتنی بر مدل پرای فرابیندی چندروالی - چندخروجی با تأکید انتقایی و ورودی‌های محدود

محمدرضا صادقی - نشره تعمیرر*

چکیده:
در مقاله قبیل یک کنترل کننده پرای فرابیندی چندروالی – چندخروجی در تأکید انتقایی و ورودی محدود، پیشنهاد شده است. این مقاله روش پیشنهادی برای فرابیندی چندروالی - چندخروجی تعیین داده شده است. عملکرد کنترل‌کننده پیشنهادی با عملکرد کنترل‌کننده پس‌خور عادی از طریق شبیه‌سازی مقایسه گردیده است. کنترل‌کننده پیشنهادی مدل یک حفاظ صنعتی خروجی دارد. عملکرد بهتری است و هرچه تأکیید انتقالی فراش افزایش یابد، تضاد عملکرد بر کنترل‌کننده فوق پیش‌شیر خواهد بود. کنترل‌کننده پیشنهادی حاوی یک سری انتگرال‌گیر است و در نتیجه می‌توان از یک آنتی‌واژ‌دندان بسیار ساده بر روی سطح‌های انتگرال‌گیر در صورت اشتباه‌سنج نوشت. استفاده شیب‌سازی استاندارد ده هم که استفاده از این روش به‌طور قابل توجهی در عملکرد کنترل‌کننده ایجاد می‌کند. کارآمیزی این نوع آنتی‌واژ‌دندان به کنترل‌کننده پس‌خور عادی به مدت ادعا موجود بر روی سطح‌های انتگرال‌گیر مبتنی بر عملی نیست. نتایج شبیه‌سازی نشان می‌دهد که پس‌خوری روش‌های پیچیده‌تر آنتی‌واژ‌دندان به‌طور چندانی برای کنترل‌کننده پیشنهادی ایجاد نمی‌کند.

مقدمه:
 نحوه طراحی یک کنترل‌کننده براساس روش کنترل مدل داخلی 1 . نوست و کنترل بسیار ساده در این روش در صورت عدم خطای انتقالی کنترل به‌صورت مدارات‌پرداز و محاسبات مرتبه برنامه‌ریزی کنترل‌کننده پس‌خور به‌صورت مدارات‌پرداز و لذا مشکلات مربوط به پایداری مدارهای پس‌خور مطرح نمی‌باشد. در زیر به‌صورت

1. Internal Model Control (IMC)
خلاصه روش IMC توصیع دادنی شود: مدار پس‌خور زیر را در نظر بگیرید:

![Diagram 1](image1)

شکل ۱- دیاگرام پس‌خور کلاسیک

در شکل فوق، y_r پرداز ورودی می‌باشد، y پرداز خطا، U پرداز ورودی، d پرداز اغتشاش و P پرداز خروجی فرآیند است که مجموع دو پرداز P و g می‌باشد و به ترتیب توابع تبدیل کنترل‌کننده و فرآیند می‌باشند. در این مقاله فرض می‌گردد که فرآیند پایدار است، اگر مدل فرآیند را با P نشان دهیم نمودار IMC معادل با مدار پس‌خور به صورت زیر خواهد بود:

![Diagram 2](image2)

شکل ۲- دیاگرام IMC

1- در کلید دیاگرام‌های جمعیتی از گل‌آهن علامت مثبت روبروی جمع‌کننده سرف نظر شده است.
47

پیشنهاد یک ترکیب یکندرنده مبتنی بر...

که در آن Q از رابطه زیر محاسبه می‌شود:

$$Q = C (I + F C)^{-1}$$

(1) اگر $y = F Q y_r + (I - F Q) d$

(2) $e = (I - F Q) (y_r - d)$

از معادلات (2) و (3) روش است که اگر $Q = P^{-1}$ باشد از افتضاحات خشک، بادو خروج، ورودی می‌تواند در میان حالاتی کنترل ایده آل است و استفاده بهبود در عمل ممکن است. در مواردی با استفاده از رابطه (1) می‌توان طراحی چنین کنترلری از طریق مدار پس‌خور باید به کنترل کننده بهره‌برداری شود. شرایطی که کارسیا و موراری [3] مندرج در شده‌اند و وقتی فرآیند دارای ناهنجاری‌ها انتقال معکوس آن مثل 1 نیست و لذا ساخت آن غیرعملی است مشکل گیری و جوی صفرها انتقال 1 سمت راست تابع تبدیل است که باعث می‌گردد که کنترل کننده ناپایدار شود.

فراوری‌های را در نظر گرفته که مدل آن به صورت زیر باشد:

$$P(s) = \begin{bmatrix} \tilde{P}_{11}(s) e^{-a_{11}s} & \cdots & \tilde{P}_{1n}(s) e^{-a_{1n}s} \\ \vdots & \ddots & \vdots \\ \tilde{P}_{n1}(s) e^{-a_{n1}s} & \cdots & \tilde{P}_{nn}(s) e^{-a_{nn}s} \end{bmatrix}$$

(2) که در آن S_i نسبت درجه جمله‌ای از S می‌باشد. برای آن کنترل‌کننده پایدار و عمل، باشگاه‌های و موراری [13] پیشنهاد کرده‌اند که S_i را به صورت زیر تجزیه کنیم:

1- Causal
2- Transmission
استقلال

\[\tilde{P}(s) = \tilde{P}_A(s) \tilde{P}_M(s) \]
(5)

که در آن \(P_M \) قسمت فاز مینیمم و \(P_M^{-1} \) پایدار و \(P_A \) قسمت همه گونه می‌باشد. در رابطه فوق \(\tilde{Q}(s) \) به این صورت فاصله فاصله نمایندگی بین نمایندگی مکرر شرط اضافه تری اعمال گردید. که علاقه‌مندانی می‌توانند در این مورد به مرجع [7] مراجعه کنند. حال می‌توان یک کنترل کننده \(\tilde{Q} \) را به صورت زیر انتخاب کرد:

\[\tilde{Q}(s) = P_M^{-1}(s) \]
(6)

کنترل کننده فوق معمولاً سری نیوچر و با ضریب‌کردن آن در یک فیلتر سری می‌گردد:

\[Q = \tilde{Q}F \]
(7)

فیلتر \(F \) را می‌توان بصورت زیر انتخاب کرد:

\[F(s) = \begin{bmatrix} \frac{1}{(r_1s+1)^{m_1}} & 0 \\ 0 & \frac{1}{(r_n s+1)^{m_n}} \end{bmatrix} \]
(8)

از فیلتر فوق برای شکل دادن به پاسخ نیز استفاده می‌شود. به یعنی اگر \(r_1 \) از گزینه انتخاب گردد پاسخ کننده و اگر تندیک به صفر شوند پاسخ به بماند ایده‌آل می‌کنند.

اگر در رابطه (1) بجای \(\tilde{Q} \) را جایگزین کنیم و بر حسب \(C \) حل کنیم خواهیم داشت:

\[C = Q(I - \tilde{P}Q)^{-1} \]
(9)

1. proper
اگر ورودی‌های فرآیند محدود نباشد عملکرد کنترل‌کننده Q در قالب مدار IMC با عملکرد کنترل‌کننده C در قالب مدار پس‌خور (شکل 1) معادل است. اما در صورت محدودسازی ورودی‌ها و عدم خطای مدل‌سازی، روش IMC به صورت مدار باز عملکرد و لذا پایداری آن تضمین نمی‌شود. ولی به طلای عدم پس‌خور کننده عمل می‌کند. مدار پس‌خور معادل آن گرچه سریع تر است ولی می‌تواند ناپایدار باشد.

چنانچه از کنترل‌کننده C در قالب مدار پس‌خور استفاده شود و ورودی‌ها محدود باشند، به‌طور کلی مربوط به صورت زیر خواهد بود:

![دیاگرام](image-url)

شکل 2: مدار پس‌خور معادل IMC با ورودی‌های محدود.

پیشنهاد یک مدار پس‌خور جدید:

در این قسمت یک جایگزینی پیشنهادی گردیده که آن را کنترل‌کننده مبتنی بر مدل 1 می‌نامیم. این جایگزینی وظیفه حاوی تأخیر انتقالی است و ورودی‌ها محدودسازی عملکرد بهتری از کنترل‌کننده پس‌خور معادل IMC علی‌رغم کنترل‌کننده C دارد. اگر در نمونه شکل 2 از یک فیلتر استفاده شود و \(F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) با به دی‌اگرام کم و اضافه کمی کننده مدار زیر بدست می‌آید:

1. Model Based Compensator (MBC)
شکل ۳- دیاگرام پی حور بیشتری

در شکل فوق \bar{F} طبق رابطه زیر تعریف می‌شود:

$$\bar{F}(s)=\begin{bmatrix}
(r_1 s + 1)^{m_1-1} & 0 \\
\vdots & \ddots \\
0 & (r_n s + 1)^{m_n-1}
\end{bmatrix}$$ \hspace{1cm} (10)

و از رابطه زیر به‌دست می‌آید:

$$\bar{C} = (I - \bar{Q} \bar{F} \bar{Q}^{-1})^{-1} \bar{Q} \bar{F}$$ \hspace{1cm} (11)

با استفاده از اتحاد زیر:

$$(I - ABC)^{-1} = A(B^{-1} - CA)^{-1}B^{-1}A^{-1}$$ \hspace{1cm} (12)

اگر $\bar{Q}^{-1} = C$, $\bar{F} = B$, $\bar{Q} = A$ انتخاب شود داریم:

$$(I - \bar{Q} \bar{F} \bar{Q}^{-1})^{-1} = \bar{Q} \left((\bar{F} \bar{F})^{-1} \right)^{-1} (\bar{F} \bar{F})^{-1} \bar{Q}$$ \hspace{1cm} (13)
\[(I - \tilde{Q} F \tilde{F} Q')^{-1} \tilde{Q} = \tilde{Q} \left[(F F')^{-1} - I \right]^{-1} (F F')^{-1} \]
\[\text{با استفاده از تعاریف } F \text{ و } F' \text{ داریم:} \]
\[(F F')^{-1} - I = \begin{bmatrix} \tau_1 s & 0 \\ \vdots & \ddots \\ 0 & \tau_n s \end{bmatrix} \]

حال اگر \(k_i = \frac{1}{\tau_i} \) باشد به راحتی می‌توان نشان داده که:
\[\left[(F F')^{-1} - I \right]^{-1} (F F')^{-1} = \begin{bmatrix} \frac{k_1 (\tau_1 s + 1)}{s} & 0 \\ \vdots & \ddots \\ 0 & \frac{k_n (\tau_n s + 1)}{s} \end{bmatrix} \]

اگر معادله (12) را از طرف راست در \(F \) ضرب کنیم و از معادله (16) نتیجه استفاده کنیم داریم:
\[(I - \tilde{Q} F \tilde{F} Q')^{-1} \tilde{Q} F = \tilde{Q} F_1 \]

که در آن \(F_1 \) برای استاد باشد:
\[F_1(s) = \begin{bmatrix} \frac{k_1}{s} & 0 \\ \vdots & \ddots \\ 0 & \frac{k_n}{s} \end{bmatrix} \begin{bmatrix} \frac{1}{(\tau_1 s + 1)\tau_1^{-1}} & 0 \\ \vdots & \ddots \\ 0 & \frac{1}{(\tau_n s + 1)m_n^{-1}} \end{bmatrix} \]

با توجه به روابط (11) و (17) درکنندگان (s) برای استاد باشد:
\[\tilde{C}(s) = \tilde{Q}(s) F_1(s) \]
 çekil 5- دیاگرام مربوطه به مصرفی ورودی‌های فرایند محدودیت.

ویکی فرایند حاوی تأخیر انقلابی است و ورودی‌ها محدودیت می‌باشند. علکه کنترلکننده (C(s)) به‌طور کلی یک مدل جریانکننده پس خور معادل IMC یعنی کنترلکننده (GMC (شکل 2)) است. نتیجتاً مغلوب این بهبود در قسمت بعد توضیح داده شود.

تشابه جریانکننده پیشنهادی با جریانکننده GMDC

چرخ و سیستم‌های چندپریودی یا چندپریودی است. یکی از نواص این جریانکننده این است که سیگنال برگشته مقادیر پیش‌بینی شده خروجی هاست. در این قسمت نشان داده می‌شود که جریانکننده پیشنهادی نز در قوی را دارد.

فرایندهای پایدار داده شده توسط معادله (2) را در نظر گرفته و فرض کنید که هیچ‌چیز سرعت راستی ندارد. گذاری تأخیر روي الی قطع باشد تقسیم مدل فرایند به‌صورت زیر به‌شکل زیر مشاهده می‌شود.

پاسخ‌ها بهبود پیدا و در ضمن در پاسخ‌ها تداخل وجود نخواهد داشت.

1. Generalized Multidelay Compensator
2. Minimum Response Time
پیشنهاد یک چهارکننده مبتنی بر ...

\[
P_A(s) = \begin{bmatrix}
 e^{-a_1s} & 0 \\
 \vdots & \ddots \\
 0 & \cdots & e^{-a_ns}
\end{bmatrix}
\]

\[
\tilde{P}_M(s) = \begin{bmatrix}
 \tilde{p}_{11} & \tilde{p}_{12} e^{-(a_{12} - a_{11})s} & \cdots & \tilde{p}_{1n} e^{-(a_{1n} - a_{11})s} \\
 \vdots & \ddots & \ddots & \vdots \\
 \tilde{p}_{n1} e^{-(a_{n1} - a_{nn})s} & \tilde{p}_{n2} e^{-(a_{n2} - a_{nn})s} & \cdots & \tilde{p}_{nn}
\end{bmatrix}
\]

اگر خطای مدل‌سازی وجود داشته باشد \((P=\hat{P})\) و \(d=0\) باشد، سیگنال برگشتی دیگر هم یعنی

\[
\hat{y}^* = \tilde{F} \hat{Q}^{-1} \hat{u} = \tilde{F} \tilde{P}_M \hat{u}
\]

حال اگر حالت خاصی را در نظر بگیریم که در آن \(i=1, \ldots, n\) باشد انگاه \(\hat{F} = 1\) است و داریم:

\[
y^* = \tilde{P}_M \hat{u}
\]

از طرفی طبق معادله فراقماندیم:

\[
y = P_A P_M \hat{u}
\]

از ترکیب دو معادله فوق نتیجه می‌شود که:

\[
y^* = P_A^{-1} y
\]

\[
y_i^* = y_i (1 + \alpha_i) \quad i = 1, \ldots, n
\]
استقلال

یعنی میانگین پرسخور ۷ مقدار پیش‌بینی شده خروجی‌ها است. حال اگر $P = 0$ باشد، مقدار پیش‌بینی شده همرافETA با تقدیم فاز خواهد داشت. ملاحظه کرده که مدار پیش‌بینی خودری و جوید باز اشاع خاصیت پیش‌بینی کردن خروجی‌ها وا حفظ C گزینه‌های یک نامور مدار پیش‌بینی کردن IMC شکل ۳ چنین حاصل شده را ندارد. امین امر سبب می‌گردد که عملکرد کنترلکننده پیش‌بینی نسبت به کنترلکننده C بهبود یابند. کننده دیگر اینکه در یک حالت خاص که $F = 1$ می‌باشد.

کنترلکننده C کنترلکننده IMC چابه گزینه گردد. مستقیم و مدار پیش‌بینی کنترلکننده C مستقیم و مدار آن یک کنترلکننده است که حس در صورت عدم محدودیت در ورودیها یا درجه سختی بالا باشد در کنترلکننده‌های PD افزایش پهنه کنترلکننده‌های C یا یک دیگر، کنترلکننده پیش‌بینی ایده‌آل صورت می‌گیرد. می‌تواند سبب تأثیرات مدار گردد در حالت پیش‌بینی کنترلکننده پیش‌بینی تحت این شرایط می‌تواند به حالت کنترل ایده‌آل می‌رسد. بهبود اینکه مدار ناپایدارگردد (لبه به شرط عدم وجود خطای مدلسازی).

اگر فاقدی به گونه‌ای باشد که حداکثر تأثیرها روی قطع باشد و باز بخواهیم که پاسخ سیستم

پیش‌بینی شده، می‌توان به دو قسمت D اعداپ و D اعداپ بخش طبیعی که پاسخ سیستم

بودن تداخل باشد و خاصیت پیش‌بینی خروجی‌ها حفظ گردد. هم‌گوینه C جری، و C بیان

پیش‌بینی شده، می‌توان با تبادل فاقدی را در یک سیستم D تبدیل به یک سیستم D ناپایدار

تأثیرهای فاقدی مدار PD روی قطع باشد. می‌توان توان طراحی را بر مبنای فاقدی مدار

انجام داد نحوه بهبود P در مرحله ۵ توضیح داشته‌ایم. وقتی فاقدی دارای صفر می‌باشد

راست است جری، و P_{M} نحوه انتخاب (۸) را بر مبنای مقادیر P_{M} و P_{M}

پیش‌بینی شده، می‌تواند عملاً می‌تواند به حالت موارد می‌فرداست.

در ادامه برای نمایش کاراکتر کنترلکننده پیش‌بینی به ذکر یک مثال می‌پردازیم.

مثال ۱:

مدل به دست آمده برای یک برچ تغییرات یک تغییرات و صورت به صورت زیر است.

محوره مجاز ورودی‌های فرایند در زیر داده شده است.

\[P(s) = \begin{bmatrix} \frac{12.8 \ e^{-3s}}{(16.7 \ s + 1)} & -\frac{18.9 \ e^{-3s}}{(21 \ s + 1)} \\ \frac{6.6 \ e^{-7s}}{(10.9 \ s + 1)} & -\frac{19.4 \ e^{-3s}}{(14.4 \ s + 1)} \end{bmatrix} \]

\[-0.3 \leq u_1 \leq 0.3 \]
\[-0.01 \leq u_2 \leq 0.59 \]

اگر یک تغییر بلهای در \(y \) به‌صورت زیر بدهیم و \(0.8 = r_1 = r_2 \) اخباریار پاسخ سیستم با هر یک از کنترل‌کننده‌های \(C \) و \(\tilde{C} \) به‌صورت مشابه در شکل‌های \(6 \) و \(7 \) خواهد بود.

\[y_r = \begin{bmatrix} 1 \\ 0.3 \end{bmatrix} \]

حال اگر در مثال قبل مقدار تأخیر بیشتری و زیانکننده‌ای گونه‌ای که نتیجه تبدیل فرایند به‌صورت زیر گروید.

\[P(s) = \begin{bmatrix} \frac{12.8 \ e^{-10s}}{(16.7 \ s + 1)} & -\frac{18.9 \ e^{-14s}}{(21 \ s + 1)} \\ \frac{6.6 \ e^{-8s}}{(10.9 \ s + 1)} & -\frac{19.4 \ e^{-5s}}{(14.4 \ s + 1)} \end{bmatrix} \]

\[\begin{array}{c|c}
\text{\(y_1 \)} & \text{\(y_2 \)} \\
\text{0} & \text{0.6} \\
\text{0} & \text{0.6} \\
\end{array} \]

\[\text{شکل} \ 6: \text{پاسخ کنترل‌کننده} \ (C) \ \text{به تغییر بلهای در} \ y \ \text{برای مدل ورودی‌ی.} \]
شکل ۷- پاسخ کنترلکننده (\tilde{C}) به تغییر پلهای در y برای مدل وردوری.

و همان تغییر قبلی را در y اعمال کنیم پاسخ سیستم با هریک از کنترلکننده‌های C و \tilde{C} به صورت نشان داده شده در شکل‌های ۸ و ۹ خواهد بود. همانگونه که ملاحظه می‌گردیم مربوط به کنترلکننده (\tilde{C}) نیازی‌دارشده در حالیکه پاسخ سیستم با کنترلکننده (C) پایدار باقیمانده‌است و انتظار سرعت پاسخ تفاوت چندانی با حالت قبل بود.

شکل ۸- پاسخ سیستم با کنترلکننده (C) به افزایش یک تغییر پلهای در y برای مدل وردوری با اندازه‌های تأخیری.
پیشنهاد یک چرایانکننده مبتینی بر...

که تأخیرها کمترین اندازه‌گیری‌ها داشته باشد. این امر حفظ خاصیت پیش‌بینی خروجی‌ها علیرغم وجود تأخیر

اشباع است.

![Graphs showing system response with and without delay](image)

شکل ۱- پاسخ سیستم با کنترل‌کننده (۰) به تأخیر پلایی در

برای مدلهای وودروری با اندازه وگرایش تأخیرها.

اعمال یک آنتیواپنده ساده

اگر برای کنترل‌کننده پیشنهادی (۰) یک نوع آنتی واپنده به صورت منتقلیکردن هر

انتگرال گیر در صورت اشاعش شدن زودی مربوط به اعمال کنترل پاسخ ها به‌خوبی قابل توجهی

خواهد داشت. نتایج حاصل در شکل ۱۰ نشان‌داده شد. اعمال این نوع آنتی واپنده به

![Graphs showing system response with and without delay](image)

شکل ۱۰- پاسخ سیستم با کنترل‌کننده (۰) به افزایش یک تأخیر پلایی در پلایی مدلهای وودروری

پا تأخیرهاي اضافي و منتقلیکردن عمل انتگرال گیري در صورت اشاعش شدن وودروری.

Downloaded from jimc.jlu.ac.ir at 16:35 IRDT on Tuesday March 31st 2020
استقلال

کنترل (\(C(s) \)) به علت عدم وجود ترم \(s^{-1} \) به صورت صریحی امکان پذیرنی نیست.

استفاده از آنتی واژن‌کننده کم‌و مواردی برای بهبود کنترل کننده‌های پس‌خوراکی‌کرده و مواردی \(V \) یک نوع آنتی واژن‌کننده پیش‌ندازکرده‌اند که در زیر به صورت خلاصه توضیح داده می‌شود.

در ابتدا فرض کنید که کنترل‌کننده (\(C(s) \)) حاوی تأثیر انتقال نیاشده‌اند، آن‌گاه نماهی حداکثر آن در فضای حالات به صورت زیر است:

\[
\dot{v} = Av + Be
\]

\[
u = C_v + D_v e
\]

\[
\dot{v} = (A - HD_v) v + (B - HD_v) e + Hu
\]

برای آنکه در حالت اشتباه کنترل‌کننده، برای این履行 وارون‌گردیده‌مانند، \(H \) را برای \(BD_v^{-1} \) (نیازبندی) موجود، و در ضمن \(u \) با ورودی واقعی \(v \) یا جایگزین \(v \) کمیکن و لذا داریم:

\[
\dot{v} = (A - BD_v^{-1} C_v) v + B D_v^{-1} \bar{u}
\]

یک تغییر دیگر از نحوه به‌دست آوردن رابطه فوق به صورت زیر است:

\[
\dot{v} = Av + B \bar{e}
\]

\[
\bar{u} = C_v v + D_v \bar{e}
\]
حال اگر از معادلات فوق \mathcal{H} حذف گردد همان رابطه (32) نتیجه می‌گردد از این مطلب در زیر استفاده خواهد گردید.

اکنون حالتی را در نظر می‌گیریم که کنترل کننده $C(s)$ حاوی تأخیر انتقالی باشد و در آن ورود نمایش نشان دهد آن به صورت کلی به دریافت زیر است:

$$\dot{v} = \sum_i A_i v(t-\alpha_i) + \sum_j B_j e(t-\beta_j)$$

(37)

$$u = \sum_i C_i v(t-\delta_i) + \sum_j D_j e(t-\mu_j)$$

(38)

برای اعمال آنالیز واینر-آپپت پیشنهادی کمپر می‌کند و می‌تواند به صورت زیر عمل می‌کند.

یافته‌ها از معادله (38) محاسبه می‌گردد. به‌طوری‌که از این‌جایان با داشتن u و استفاده از معادله زیر خطای فرضی (16) محاسبه می‌شود:

$$\ddot{u} = \sum_i C_i v(t-\delta_i) + \sum_j D_j e(t-\mu_j)$$

(39)

با داشتن \mathcal{H} و استفاده از معادله زیر متغیرهای حالت کنترل کننده محاسبه می‌شوند:

$$\dot{v} = \sum_i A_i v(t-\alpha_i) + \sum_j B_j e(t-\beta_j)$$

(40)

اگر از آنالیز واینر-آپپت فوق برای مثال قبل استفاده کنیم نتایج برای کنترل کننده‌های $C(s)$ و $\mathcal{H}(s)$ معادله است و در شکل 11 نشان داده شده است.

[شکل 11: پاسخ کنترل کننده‌های C و \mathcal{H} به ازای یک تغییر پیش‌بینی در y_2]

مدل ورود و بری با تأخیرهای اضافی و اعمال آنالیز واینر-آپپت کمپر و موراری.

--

Please note that the translation is not perfect and might contain some errors or phrasing issues due to the complexity of the text and the limitations of the translation tool.
استقلال

از مقایسه شکل‌های ۱۰ و ۱۱ ملاحظه می‌شود که پاسخ حاصل از کاربرد آنتی‌اینترنم کمپو و مواردی فعال می‌کنند. بنابراین نسبت به آنتی‌اینترنم ساده (توقف انترگالیگر در صورت اشتباه) ورودیها) از خود شناسی می‌دهند. این امر در زیر توضیح داده می‌شود. همان‌گونه که از معادله (۲۸) مشهور است برای محاسبه ۱۲ احتمال به‌مثابه، حالات کتریکند. در حالت دقیق اگر در محاسبه ۶۲ از مقادیر (۶۲) در حالتت دقت استفاده شود منجر به خطای اضافی می‌گردد، یا اگر از این خطا در به‌کارگیری معادله (۲۸) جریان ارسال به خطای در حالت تقریبی باشد، یک جایگزین می‌کنم.

اگر باید مثال قبل از روش فوق استفاده کنیم پاسخ برای هر دو کتریکند به و C و C خیلی کم است. می‌گردد نتایج مربوط به شکل ۱۲ نشان‌دهنده شدن. همان‌گونه که از شکل ۱۲ پدیده نتایج کامل شده نتایج بدست آمده با قطع عمل انترگالیگر دیجیتال محاسبه شده و به یک سایر. این پدیده بایستی توجه داشته که عامل آنتی‌اینترنم ساده به‌صورت توقیف انترگالیگرها به‌سیار ساده‌تر از استفاده از آنتی‌اینترنم کمپو و مواردی است.

![شکل 12](image)

شکل ۱۲-پاسخ کتریکند C و C پاسخ پذیرش پل پا در پاسخ برازدمد وود و برای تأخیرهای اضافی و استفاده از آنتی‌اینترنم کمپو و مواردی با تصحیح سیگنال خطا.

تیپ‌گیری

در این مقاله یک کتریکند پس‌خور برای سیستم‌های چندرویی که حاوی تأخیرات قطعی برده و روی‌پیشگیری برای بی‌پرواز کارکرد کتریکند پیشنهادی با
کنترلکننده پس‌خور کلاسیک به‌دلیل آنکه از روش IM از طریق مشابه‌سازی کامپیوتری مقایسه‌گرده است، نتایج نشان می‌دهد که طرح پیشنهادی عملکرد بهتری دارد و با افزایش سیزان تأخیرهای فرآیند تفاوت عملکرد دو کنترلکننده بیشتری و گردیدن عملکرد روش‌های ساده آنتی‌وایندآپ مانند متوقف‌کردن عمل اتکال‌گیری در صورت اشباع فندر و روبروی ها به کنترلکننده پیشنهادی IM امکان بی‌پرسته مرحله‌ای که اعمال آن به کنترلکننده پس‌خور استاندارد بعست آماده از روش IM مقدور نمی‌باشد.

