تشخیص اعداد و علامات دستنویس فارسی به کمک شبکه‌های عصبی

فربرز سیاحان مشی - حسین ملی **

چکیده:
در این مقاله، پس از مروری بر مسئله تشخیص الگو و نقش شبکه‌های عصبی در این مورد، از این شبکه‌ها به عنوان یک ابزار محاکماتی قوی در تشخیص اعداد و علامات دستنویس فارسی استفاده می‌کنیم. بدین منظور شبکه‌های چند لایه تغییر می‌کنیم را مورد بررسی قرار می‌دهیم و سپس از این ساختار برای رسیدن به مقادیر مورد نظر استفاده می‌کنیم. ابتدا پارامترهای مختلف ساختار فوق از قبیل تعیین باند الکتریکی ورودی پننه و خروجی را بهینه‌سازی نموده و سپس به سادگان و هر سرکده‌ای شبکه بهینه می‌پردازیم.

مقدمه:

مطلب بخش مهندسی و علوم کامپیوتر دانشکده مهندسی دانشگاه شیراز

** استادیار دانشکده برق و کامپیوتر دانشگاه اصفهان

1. Pruning
2. Optical Character Recognition
روش‌های معمول در تشخیص الگوها به‌طور عام و نوشته‌ها به‌طور اخص را می‌توان به دو دسته روش‌های ساختاری و روش‌های آماری تقسیم‌بندی کرد.

1. Structural
2. Statistical
3. Feature space
4. Classification
5. Classifier
تشخیص اعداد و علائم دستنویس

برای تابع فرمهای مختلف را می‌توان فرض کرد. اگر را تابع محدودکننده سخت انتخاب کنیم، مدل یک نرون مصنوعی

$$S_i = \sum_{j=1}^{N} w_{ij} X_j$$

$$O_i = f(S_i)$$

شرح 1. مدل یک نرون مصنوعی

مدل مصنوعی نرون با مدل پیلوزیکی آن کاملاً منطبق می‌شود، اما از لحاظ محاسباتی استفاده از تابع محدودکننده سخت باعث است چسترین اطلاعات مفیدی درباره مجموع وزن‌دار ورودی می‌شود و با پنالتی در شبکه‌های مصنوعی فرمهای دیگر تابع پژوهش که به کار گرفته می‌شود که معمول‌ترین آنها تابع غیر خطی سیگمودی با معادله $f(S_i) = \tanh(S_i)$ است.

شبکه‌های چند لایه تغذیه مستقیم و تقسیم آنها در تشخیص الگو [10]

یکی از ساختارهای معروف در شبکه‌های عصبی، شبکه‌های چند لایه تغذیه مستقیم است (شکل 2). در این ساختار پردازش‌های عصبی در جنگل‌های مجزا و پشت سرم فوارده می‌شوند و پردازش‌های هر لایه فقط مجازی به دریافت سیگنال از پردازش‌های لایه‌ای می‌باشند. ارسال سیگنال به پردازش‌های لایه‌ای بعد هستند. نرون‌های لایه سمت چپ راکه با پخش شان داده‌های ورودی 1. Hard Limiter
ارتباط شبکه را با دنبال خارج برقرار می‌کنند. نرون‌های لاپتی میانی راکه ورودی و خروجی آنها منحصر به نرون‌های شبکه می‌شود، نرون‌های پنهان می‌باشند. برای تریبیک شکسته نمونه‌ای از تعدادی زوج تریبیک (طبیعی مطلوب، الگو) استفاده می‌شود. هدف از تریبیک شکسته، اصلاح و فقت وظایف شبکه به قسمی است که تابع متوسط مربعات خطای شبکه روز مجموعه زوج‌های تریبیک می‌شود. الگوریتم تریبیک شبکه‌های جدید لاپتی می‌تواند با استفاده از الگوریتم تریبیک شبکه‌های جدید لاپتی محاسبه داده‌های ویک‌ریز که به سمت شبکه تریبیک می‌روند و تغییر وزن‌ها به صورت زیر انجام می‌پذیرد:

\[
 w_{ij}^{new} = w_{ij}^{old} + a\delta_i y_j
\]

\[
 \delta_i = \begin{cases}
 f'_i(s_i)(d_i - y_i) & \text{نر در لایه خروجی} \\
 f'_i(s_i) \sum_k W_{ki} \delta_k & \text{نر در لایه پنهان}
 \end{cases}
\]

در این رابطه، \(f' \) خروجی واقعی نرون \(z_i \) یا \(\tilde{y}_i \) به تریبیک خروجی‌های واقعی و مطلوب نرون \(z_i \) و \(\tilde{y}_i \) مجموع وزن‌دار ورودی‌های نرون قانون هستند. نرخ یادگیری \(\alpha \) است که سرعت همبستگی وزن‌ها

1. Back Propagation (BP)
تشخیص اعداد و علائم دستنویس...

و پایداری الگوریتم را کنترل می‌کند. مرحله 8 پر۰ گر باشد سرعت همگراپی و احتمال تغییرات و واگراشند وزن‌ها بهتر می‌شود. معمولاً $1 < a < 0.1$ انتخاب می‌شود و از $a = 0.1$ به‌عنوان حدس اولیه استفاده می‌شود. یکی از مشکلات الگوریتم‌های تریتی شیب‌هایی چند لایه، به نظر افتدان وزن‌ها در یک مسایل محیطی و در نتیجه جلوگیری از رسیدن به مسایل محیطی باید متوسط مربعات خطای می‌شود. برای جلوگیری از این امر در الگوریتم BP از یک جمعه مسئول به ثبت می‌شود که معمولاً حدود 0.1 اختیار می‌شود. به یکی از دو صورت زیر استفاده می‌شود:

$$\Delta w_{ij}(n) = a \delta_j y_j + \eta \Delta w_{ij}(n-1)$$

$$\Delta w_{ij}(n) = a (1-\eta) \delta_j y_j + \eta \Delta w_{ij}(n-1)$$

در این دو رابطه $\Delta w_{ij}(n)$ تغییر وزن w_{ij} به ازای الگوریتی تغییرات فعلي و $\Delta w_{ij}(n-1)$ تغییر وزن w_{ij} به ازای الگوریتی قبلی است.

استفاده از شیب‌های عصبی جهت تشخیص اعداد دستنویس فارسی[11]

بعد از معرفي شیب‌های عصبی و نشان آنها در تشخیص الگوی، شیب‌هایی چند لایه مستقیم را جهت تشخیص اعداد دستنویس فارسی انتخاب می‌کنیم و به نهایت مانتور کیفیتی که در تحقیق، شیب‌هایی از قبیل تعداد نهایی و رو به روی پهنان و خروجی می‌پردازیم. طبق تعریف، شیب‌هایی با یک شیب‌هایی از قبیل تعداد نهایی و رو به روی پهنان دقت را در تشخیص اعداد داشته‌ایم. اگر تعداد نهایی لایه پهنان یک شیب‌هایی بسیار کم انتخاب شود الان مد برای آزادی در پایانی، شیب قادی به پایانی نخواهد بود. از طرف دیگر، تعداد نهایی پهنان شیب‌هایی مناسب باید به شیب‌هایی در حفظ و ذخیره کردن الگوهای تریتی خود می‌شود. و در خوراکی که در مجموعه تریتی‌ای به نتایج آن ابهشتی با آنها دارید، این پدیده به نظیم بر نویس و یا تریت

1. Local Minimum 2. Generalization
3. Interpolation 4. Tuning to the Noise
استقلال

پیش از جدا مغروف است، با تاکید برای هر منظور و کاربرد خاص، تعداد بهینه‌ای از ترکیب شهرنامه و وجود داده‌های به‌کنار گذاری شبکه‌های مختلف و اندوزه‌گیری ضریب آنها تعیین شود. تعداد ترکیب شهرنامه ورودی با نوع کد‌گذاری با استفاده از الگوی استفاده از الگوی ورودی و استخراج ویژگی الگو ارتباط دارد. در این طرح چه جهت انتقال الگوهای دستنویس به کامپیوتر از دیجیتایزر به عنوان مورد ۳ دیجیتایزر استفاده شد. عمل استخراج ویژگی‌های Auto Cad سنسور و نحوه اجرای بده گوفتهای انجام شده که بردار ویژگی الگو از اندوزه و موقعیت الگو روی دیجیتایزر مستقل باشند. برای این منظور دو خط افقی با یکی از الگو و دو خط عمودی از چپ و راست الگو به سمت الگو حرکت داده می‌شود تا بر الگو می‌ماند. شوند و بدین ترتیب یک پنجره بر الگو می‌خیزد. سپس مستقل M × N گوشته چپ و پایین پنجره را به‌عنوان مختصات مستقل کرده و مساحت پنجره را به کوچک تکمیل می‌کنیم و عبور یا عدم عبور الگو از هر مستقل را به ترتیب یا دو عدد بايتی ۱ یا ۰ نشان می‌دهیم (شکل ۳). در پایان یک پردرار M×N یا نوی کد‌گذاری با استفاده الگوی کدکی. این نوع کد‌گذاری را کد‌گذاری شبکه‌ای می‌نامند. این روش فقط برای دو رقم ۰ و ۱ و علامت منها (۰) به‌دست آمده که دارای شکل یک بعدی هستند، نتیجه‌ی مطلوبی

شکل ۳: کد‌گذاری شبکه‌ای (عدد)

1. Over-Training
2. Coding
3. Driver
4. Feature Vector
تشخیص اعداد و علائم دستنویس...

به دست‌نیمی‌دهد. برای رفع این اشکال طول‌یابی عرض‌کننده محیط بر این شکوه‌ها و فاصله‌هایی می‌دهیم.

نمونه‌ای از کدکه‌های نوبتی در صورت این روش برای شکوه‌ها دستنویس، 10 تا 12 عدد 4+-، 4+، 4 و 4 (ممیز) در شکل 2 نشان داده‌اند.

با استفاده از روش فوق تعداد 226 شکوه دستنویس (243 شکوه از هر 5 عدد و علائم) از 15 نفر با 7 فرمت مختلف 4، 4، 4، 4، 4، 4 و 4 برشانده شده که از این تعداد 55 شکوه برای نمایشگر و 156 شکوه توسط شبکه (اندازه‌گیری میزان تصمیم‌گیری) در نظر گرفته شد.

کدهای ورودی 0-0-0 به علت فاقدان قدرت تشخیص کلاسی برای دو شکوه دستنویس 2 و 4

کدهای خاصی را تجربه دادند و بنابراین فرمت‌های مزبور جذب شدند و انتخاب فرمت بهینه

ورودی از میان 5 فرمت دیگر صورت گرفت.

تعمیم تعداد بهینه‌ترین‌های آینه‌های خروجی نیز با نوع کد مورد استفاده برای طبقات خروجی ارتباط

دارد. با توجه به تعداد اعداد و علائم‌هایی که باید مورد تشخیص قرار گیرند، تعداد طبقات خروجی

برابر 15 است. برای کنگره‌ای این طبقات از 15 بردار مقداری 15 بعنوان استفاده می‌کنیم. دراین

صورت کد مرتب به طبقه 1ام، یک بردار 15 بردار است که مولفه‌های آم آم و بقیه استاندارد صفر

است (یعنی 0، 0، 0، …، 0) . در این استفاده از این نوع کد، ماکزیمم کردن فاصله

همینهای یک کدکه طبقات مختلف است. تنها می‌شود که تنا در صورت استفاده از این نوع کد،

طبقاتی کننده عصبی به ست طبقه‌بندی کننده بهینه بیزآ می‌کنند (8). در این حالت هر نمونه

خروجی نمایشگری یک طبقه خواهد بود و خروجی هر نمونه عناوین تقریبی از امکانی 2 قرارگیری

ASCII شکوه ورودی در آن طبقه تفسیر خواهد شد. اگر از کدکه 4 بین از پنج‌یا 8 بینی

استفاده شود، بدین‌سانه فاصله همینگ کمک با کدکه طبقات مختلف خطای تشخیص اعداد

ورودی شود. اما توجه به توضیحات فوق برای پایداری کد مرتب به طبقات خروجی ورودی

شکوه به 15 نمونه در لایه خروجی احیای خواهد شد.

برای تصمیم‌گیری بهینه‌ترین‌های آینه‌های پنهان و فرمت بهینه ورودی از میان 5 فرمت 4، 4، 4، 4، 4، 4، 4، 4

از شبیه‌سازی شکوه‌های مختلف و اندازه‌گیری میزان تصمیم و درون‌بخش

شبکه‌های ترتیب‌شده فرمت روز یک مجموعه واحد تخت (شامل 240 الگو) استفاده می‌کنیم و به

1. Hamming Distance
2. Bayes
3. Likelihood
شکل ۳- نمونه‌ای از کلمات حاصل از اعمال کنگناری شیپهای روزی الگوهای دست‌نویس
تشخیص اعداد و علائم دستنویس...

ازای هر کدام از ۵ فرمت ورودی، شیب‌های راک دارای کمترین خطا در تشخیص الگوها مجموعه

شنیده می‌شود.

شیب‌سازی شیب‌های مختلف و تابع یکدیگر به‌دست آمده

dر نظریه‌گریم و با استفاده از الگوریتم تریپل BP

و تریپل تریپلی ۱/۰/۰ شیب‌های مختلف می‌پذیرد. لازم به ذکر است که با انتخاب

۱/۰ خواهد بود. باید به توجه به میل کردن مجاوی تابع سیگموید به سمت ۱ انتخاب تریپل تریپلی

غیر صفر ضروری است.

به ازای هریک از ۵ فرمت ورودی مختلف، تعداد نزدیک‌ترین پهنای را تغییر داده و به‌ترتیب

شیب‌های حاصل می‌پذیرد. منحنی تغییرات خطای شیب‌های مختلف در تشخیص الگوها

مجمع‌آوری تابع و منحنی تغییرات دمای همگراپی این شیب‌ها بر حسب تغییرات ممکن است

پهنای در ابزار و تغییرات که تریپل شیب با ۷ وزن اولیه مختلف انجام‌گردد و نقاط تنش

داده‌شده روی منحنی متوسط آماری نتایج حاصل از ۷ بار تریپل هستند. بنابراین که تولید دیگر

تریپل شیب‌های، لازم از این ارائه‌های الفبادی الگوها تریپلی به شیب‌ها در حال تریپل است. اگر در ارائه

الگوها تریپلی به شیب‌ها، وجود تریپل حاضر در پیشنهاد و تولید شیب‌های شیب‌ها پایینی می‌آید

و همکار است به صفر برسد. مثلاً اگر تمام الگوها مربوط به یک طبقه خاص را بر اساس

به شیب‌ها بدهیم، بنابراین شیب راک در هنگام یادگیری این الگوها از منحصراً کمتری به مجموع الگوها;

طبقات دیگر یادگیری، از یاد می‌برد. همان‌طور که از شکل‌های ۵ به تا پیش‌بینی به ازای فرمت

ورودی، منحنی خطای شیب‌ها به ازای تعداد بیش‌تر از نزدیک‌ترین پهنای می‌شود. همچنین

مشاهده می‌کنیم که افزایش تعداد نزدیک‌ترین پهنایی پهنای نزدیک‌تری شیب‌ها کاهشی می‌یابد. و این به

علت افزایش دردشت ازابدی شیب (وزن‌های شیب‌های) است، مشخصات شیب‌های الگوشان انتخاب شده به ازای

هریک از ۵ فرمت مختلف ورودی در جدول ۱ تقابل‌دهنده است. این شیب‌ها متناسب با میانگین منحنی

تغییرات خطای است.
6 X 7 input format

bad paths of 200

No of hidden neurons

60 62 64 66 68 70 72 74 76 78 80

14 16 18 20 22

learning sweeps

No of hidden neurons

60 62 64 66 68 70 72 74 76 78 80

24 26 28 30 32

شکل 6: منحنی تغییرات حداکثر زمان همگرایی شبکه با رویمتر ورودی 7×7، با تغییر تعداد النهایی پننهان
شکل ۷- منحنی تغییرات خطا و زمان همگراشان شبکه با فرمت ورودی ۷×۷، با تغییر تعداد روندهای پنهان.
7 X 8 input format

No of hidden neurons

bad paths of 200

No of hidden neurons

learning sweeps

شکل 8: تغییرات خطای زمان همزمانی شبکه با فرمات ورودی 7x8، با تغییر تعداد روندهای پنهان
شکل 9. منحنی تغییرات خطا و زمان همگرایی شبکه با قوامت ورودی 8X8 با تغییرتعداد نهایی پننه
رشته انتخاب فرم بینه و ورودی، قدرت تعیین و درون‌پایی شیک‌های فرو را در تشخیص
الگوهای طبقه‌بندی مختلف اندوزه‌گیری کرده، بدین منظور یک مجموعه تست شامل 150 الگو (از هر
طبقه 50 الگوی استندنتس) به کار رفته و درصد خطا یک درخشانی در تشخیص الگوها طبقه‌بندی
بسته‌بندی شده‌اند. نتایج حاصل از این آنالیز به‌طور یک جدول 2 آماده‌کرده، همانطور که از اعداد مدرج در
لین جدول پیش‌بینی شده، نشان می‌دهد که در جدول 6 به ازای الگوها به طبقه (1)، شبکه با
فرم ورودی 8x6 به ازای الگوها به طبقه (1)، شبکه با فرم ورودی 7x7 به ازای الگوها به طبقه (2)
و شبکه با فرم ورودی 6x6 به ازای الگوها به طبقه (3) 70 تا 80 درصد دارند. اما تغییرات خطا
به ازای الگوهای طبقه‌بندی مختلف در شبکه با فرم ورودی 8x8 کمتر است، همچنین درصد خطا
در شبکه با فرم ورودی 8x8 نیز از سایر شبک‌ها کمتر است بنابراین فرم ورودی 8x8 را
به عنوان فرم مناسب و ورودی انتخاب می‌کنم.

<table>
<thead>
<tr>
<th>جدول ۱- شبکه‌هایی انتخاب شده به ازای فرم‌های ورودی مختلف</th>
<th>تعداد خطا از</th>
<th>زمان منشعب</th>
<th>لاپی پهنای بیشینه</th>
</tr>
</thead>
<tbody>
<tr>
<td>فرم ورودی</td>
<td></td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>6x6</td>
<td>60 درصد</td>
<td>15</td>
<td>34/8</td>
</tr>
<tr>
<td>6x7</td>
<td>50 درصد</td>
<td>15/75</td>
<td>32/5</td>
</tr>
<tr>
<td>7x7</td>
<td>80 درصد</td>
<td>16/55</td>
<td>32/5</td>
</tr>
<tr>
<td>7x8</td>
<td>50 درصد</td>
<td>18/62</td>
<td>29/28</td>
</tr>
<tr>
<td>8x8</td>
<td>70 درصد</td>
<td>16/87</td>
<td>22/3</td>
</tr>
</tbody>
</table>

به منظور تعیین تعداد بهینه نرخ‌های لاک‌پهنای و همچنین کاهش خطای شبکه بیشینه، تعداد
الگوهای تریبی را از 50 الگو به 800 الگو افزایش می‌دهیم و مجدداً از متغیرهای تعداد نرخ‌های
لاک‌پهنای منحنی تغییرات خطای شبکه‌های مختلف را به‌دست می‌آوریم (شکل 10). همان‌طور که
از این نکته می‌پتیم منحنی خطا به ازای 40 تا 50 درصد پهنای افتاق می‌افتد، بنابراین تعداد
بهینه نرخ‌های لاک‌پهنای برابر 40 انتخاب می‌شود. بعد از تعیین تعداد بهینه نرخ‌های لاک‌پهنای، دقت
شبکه‌ها در تشخیص الگوها مجموعه تست شامل 75 الگو (15 الگو از هر طبقه) اندوزه‌گیری
کرده‌که نتایج حاصل از این آنالیز‌گیری بررسی دارند در جدول 3 آماده‌نشده. همان‌طور که
از اعداد مدرج در جدول 3 پیداست، متوسط میزان دقت شبکه بیشینه در تشخیص

جدول ۲: درصد خطا توسط ۶۸٪، ۷۵٪ و ۸۸٪ درصد شیبکه انتخاب شده روزه‌گوهای طبقه‌بندی مختلف

<table>
<thead>
<tr>
<th>کلاس</th>
<th>فرمول ۶۸٪</th>
<th>فرمول ۷۵٪</th>
<th>فرمول ۸۸٪</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۵۲</td>
<td>۳۰</td>
<td>۱۶</td>
</tr>
<tr>
<td>۱</td>
<td>۱۰</td>
<td>۱۲</td>
<td>۱۶</td>
</tr>
<tr>
<td>۲</td>
<td>۲۰</td>
<td>۲۸</td>
<td>۲۰</td>
</tr>
<tr>
<td>۳</td>
<td>۲۸</td>
<td>۳۰</td>
<td>۳۰</td>
</tr>
<tr>
<td>۴</td>
<td>۱۰</td>
<td>۱۶</td>
<td>۱۸</td>
</tr>
<tr>
<td>۵</td>
<td>۸</td>
<td>۱۶</td>
<td>۱۶</td>
</tr>
<tr>
<td>۶</td>
<td>۱۴</td>
<td>۱۲</td>
<td>۲۴</td>
</tr>
<tr>
<td>۷</td>
<td>۲</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۸</td>
<td>۱۸</td>
<td>۱۸</td>
<td>۱۸</td>
</tr>
<tr>
<td>۹</td>
<td>۲۰</td>
<td>۴</td>
<td>۶</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۴</td>
<td>۱۸</td>
<td>۲۴</td>
</tr>
<tr>
<td>۱۱</td>
<td>۸۰</td>
<td>۵۸</td>
<td>۰</td>
</tr>
<tr>
<td>۱۲</td>
<td>۲۲</td>
<td>۱۲</td>
<td>۲۶</td>
</tr>
<tr>
<td>۱۳</td>
<td>۲۲</td>
<td>۲۴</td>
<td>۰</td>
</tr>
<tr>
<td>۱۴</td>
<td>۲۰</td>
<td>۱۸</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۵</td>
<td>۲</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱۶</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>کل خطا</td>
<td>۱۴۰</td>
<td>۱۲۸</td>
<td>۱۱۶</td>
</tr>
</tbody>
</table>

اعداد دسترسی فارسی در حدود ۹۵٪ است که نشان‌دهنده تواناپی بالایی شیبکه در تعیین و تشخیص گوهای دسترسی فارسی است.
8 X 8 input format

No of hidden neurons

bad patts of 200

شکل ۱۰- منحنی تغییرات خطای شبکه با فرمت ورودی 8x8
جدول 3- دقت شیبکه با فرمت ورودی 88 و 40 نرون پهنای

<table>
<thead>
<tr>
<th>شیبکه</th>
<th>متوسطدقت / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td>98</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>100</td>
</tr>
<tr>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>19</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>21</td>
<td>100</td>
</tr>
<tr>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>23</td>
<td>100</td>
</tr>
<tr>
<td>24</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>26</td>
<td>100</td>
</tr>
<tr>
<td>27</td>
<td>100</td>
</tr>
<tr>
<td>28</td>
<td>100</td>
</tr>
<tr>
<td>29</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>31</td>
<td>100</td>
</tr>
<tr>
<td>32</td>
<td>100</td>
</tr>
<tr>
<td>33</td>
<td>100</td>
</tr>
<tr>
<td>34</td>
<td>100</td>
</tr>
<tr>
<td>35</td>
<td>100</td>
</tr>
<tr>
<td>36</td>
<td>100</td>
</tr>
<tr>
<td>37</td>
<td>100</td>
</tr>
<tr>
<td>38</td>
<td>100</td>
</tr>
<tr>
<td>39</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
</tr>
</tbody>
</table>

ساده‌کردن و هرس‌کردن شبکه پهنای

با توجه به میانگین وزن اتصال بین دو نرون در یک شبکه‌عصبی میانگین همگنی و
هم‌رسیدگی بین دو نرون است، بعنوان مدل ساده‌کردن حذف وزنهای نزدیک صفر تأثیر چندانی بر عملکرد
شبکه نگذارند. برای تحقیق در این امر، ابتدا وزنهای با نرم‌مطلق کوچکتر از 1/0، میانگین 2/0،
۶۰/0 از شبکه بهینه حذف شدند و در هر مرحله خطا شبکه‌های حاصل روى یک مجموعة تست
شامل ۶۰۰ الگوی دستنویس اندازه‌گیری شد. نتایج حاصل از این اندازه‌گیری در جدول 4 آمده است.

جدول 4- خطای حاصل از حذف وزنهای روی ۶۰۰ الگوی تست

<table>
<thead>
<tr>
<th>سطح استاند استاند حذف وزنهای خطا با ترسرش 5/0</th>
<th>تعداد وزنهای حذف شده</th>
<th>خطا</th>
<th>خطای ترسرش 5/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>1/1</td>
<td>177</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>345</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>1/3</td>
<td>527</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>710</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>1/5</td>
<td>898</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>1/6</td>
<td>1072</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>1/7</td>
<td>1247</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>1/8</td>
<td>1432</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>1/9</td>
<td>1542</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1686</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

ستون دوم این جدول تعداد وزنهای حذف‌شده از شبکه بهینه را نشان می‌دهد. در ستون چهارم نیز
تشخیص اعداد و علائم دستنویس

تعداد تشخیص‌های طلق شیکه با دنن‌گرفتن تیوارانس 5/آمداس. در این صورت هنگامی که گروه دستنویس یک سوزن می‌باشد تشخیص داده‌می‌شود که خروجی چون مربوط به طبقه آن گروه باشد. در غیر آن صورت شیکه در تشخیص الگو دچار خطا خواهد شد. لازم به ذکر است که معیار تشخیص صحیح شیکه در تعلق الگوی رنگی، رنگ طبقه‌ای و ۲۱۵ ژرم شیکه بهبود قابل حفظ است.

با توجه به اینکه می‌توان رمازیدی انواع مختلف شیکه بردار و وزن‌ها را از می‌یک نیم تا همیشه مرتب می‌باشد. خطای شیکه روزه مقدار ۵۰۰ درصد، شیکه‌های حاصل از شیکه‌ها مجدداً روزه ۸۰۰ الگو تحت ترتیب و قرارگرفتن پس از ترتیب مجدد خطای این شیکه‌ها در تشخیص ۶۰۰ الگو مجموعه تست اندازه‌گیری شده. نتایج حاصل از این اندازه‌گیری در جدول ۵ آمداس. ممکن است که بهترین نتایج در جدول پیدا شود. این می‌تواند به سطح استاندارد حفظ وزن و ژرم‌زدن از ۰/۵ ترتیب مجدد بعثت کامه خطای گردد که این ترتیب به سطح استاندارد کامه ترتیب مجدد تأثیری نداشته است.

امنیتی که در جهت ساده‌سازی شیکه بهبود اندازه‌گرفته، کوانتیزه‌کردن وزن‌های شیکه بهبودی بریدن صورت که وزن‌های شیکه به ترتیب باید به ترتیب رأی اعداد و باید به ترتیب اعداد و رأی اعداد پیدا شود. خطای شیکه محاسبه کارتیزیکردن وزن‌های شیکه روزه‌های مجموعه تست الگوی اندازه‌گیری شده که نتایج حاصل در جدول ۵ آمداس. ممکن است بهترین نتایج در جدول پیدا شود. با رأی اعداد نیز شیکه‌ها و دارای خطای قابل قبول است که از این نکته می‌توان در پایداری سخت‌افزاری شیکه استفاده کرد.

اندازه‌گیری قابلیت استفاده

برای جداسازی شیکه‌های غیرقابل استفاده شیکه‌های از آتروپی خروجی می‌توان بهره جست

[۹] به دنبال ترتیب که یافته انادازا خروجی رنگ‌های خروجی نسبت به مجموع آنها تراز می‌شود به
قسمتی که بنوان خروجی نویش‌ها را به عنوان احتمال وقوع طبقات مختلف (P_i) تفسیرکرد. سپس آنرژی توانایی لایه‌های خروجی طبق فرمول $H = \sum_{i=1}^{18} P_i \ln (P_i)$ برای هر گروه محاسبه می‌شود. اگر مقدار آنرژی از 7/4 بیشتر شد تصمیم طبقه‌بندی کننده عصبی قابل اعتماد نیست. اما اگر آنرژی کم‌تر از 7/4 بود، تصمیم شیبک عصبی قابل قبول است. سطح آستانه‌های فوق به روش سمعی و خط از با مطالعه تعداد زیادی گروهی دستگاه و تصمیم شیبک در برابر آنها تعیین شد. بنابراین، شیبک با

جدول 5. خطای شیب‌های دوباره تریت‌های روز 600 گروه تست

<table>
<thead>
<tr>
<th>خطای گروه تست</th>
<th>خطای تریت 5/40</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>65</td>
</tr>
<tr>
<td>0/2</td>
<td>64</td>
</tr>
<tr>
<td>0/3</td>
<td>60</td>
</tr>
<tr>
<td>0/4</td>
<td>61</td>
</tr>
<tr>
<td>0/5</td>
<td>71</td>
</tr>
<tr>
<td>0/6</td>
<td>76</td>
</tr>
<tr>
<td>0/7</td>
<td>84</td>
</tr>
<tr>
<td>0/8</td>
<td>79</td>
</tr>
<tr>
<td>0/9</td>
<td>80</td>
</tr>
<tr>
<td>1</td>
<td>90</td>
</tr>
</tbody>
</table>

جدول 6. خطای شیب‌های حاصل از کواتریت کردن وزن‌ها روز 600 گروه تست

<table>
<thead>
<tr>
<th>خطای تریت 5/40</th>
<th>ارقام اعتبار</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>66</td>
<td>4</td>
</tr>
<tr>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>68</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
</tr>
<tr>
<td>53</td>
<td>0</td>
</tr>
</tbody>
</table>

مقدار به‌دست‌آمده از تقویت نیز مطابقت‌داره‌های ابزار در تصمیم‌گیری طبقه‌بندی کننده.
نتیجه‌گیری
در این مقاله پس از موروری بر مسئله تشخیص الگو و شبکه‌های عصبی مصنوعی، ساختار شبکه‌های چند‌لایه تغذیه مستقیم انتخابی برای تشخیص اعداد دستنویس در سیستم معرفي شده. آن‌گاه به‌منظوری ساختار نرخ برای کاربرد مورد انتظار تشخیص به‌منظور انجام‌گرفت که در نهایت یک شبکه عصبی به‌هم‌بنا 95/7 به‌دست آمد. سپس ساده‌کردن شبکه و حذف تعدادی از وزن‌های آن مورد توجه قرار گرفت. نتایج به دست آمده نشان می‌دهد که می‌توان تعداد قابل توجهی از وزن‌های شبکه به‌هم‌بنا حذف کرد بدون اینکه در عملکرد شبکه به‌هم‌بنا تأثیری چندانی داشته باشد. عملکرد شبکه در مقابل با نویز کوانتیزاسیون و زنگ نیز مورد بررسی قرار گرفت. نتایج حاصله حاکی از اثر تجربی این نوع بر عملکرد سیستم است.

