اثرکردن بر تغییرات ریز ساختاری و رفتار تغییر فرم گرم فولادهای نیتایم‌دار

عباس نجفی‌زاده* - مسعود ترابی†

چکیده

در این مقاله اثر کردن و رفتار تغییر فرم گرم بر روی مکانیزم‌های نرم شدن استاتیکی و دینامیکی فولادهای میکروالیازی نیتایم به دو تایی فریت و اوستنیت مورد بررسی قرار گرفت. پژوهش به‌عمل آمده، نشان می‌دهد که افزایش مقدار کردن در محدوده (350/300/0 درصد) می‌تواند تبیور مجدد اوستنیت را به‌تأخیر اندازد که این امر ناشی از کردن آزاد و رسوبات (CN(Ti) است. در فاز فریت نیز امکان تبیور مجدد دینامیکی وجود دارد و این نتایج می‌تواند با تبدیل کردن و افزایش میزان C و

*دانشیار دانشگاه مهندسی مواد - دانشگاه صنعتی اصفهان
†فارغ التحصیل کارشناسی ارشد دانشگاه مهندسی مواد - دانشگاه صنعتی اصفهان
مقدمه
معمولا تغییر فرم نوادگان در دماهای بالا با تغییرات ساختاری و تحولات فازی توانایی تأمین است. این مسئله باعث می‌شود که تحت شرایط مختلف تولید از نظر سرت، میزان تغییر فرم، دما تغییر فرم و... ساختار میکروسکوپی و خصوصیات مکانیکی محصولات تولید شده نهایی متفاوت باشند.

برای دستیابی به مشخصات مکانیکی بالاتر در محصولات کار گرم شده، لازم است که پارامترهای مؤثر بر تغییر فرم و همچنین تحولات ریز ساختاری در دماهای بالا شناخته شوند. از تحولات ریز ساختاری که معمولاً در فرآیندهای تغییر فرم گرم رخ می‌دهند، از پدیده‌های پازیبی و تبلور مجدد استاتیکی و دینامیکی با عنوان مکانیزم‌های نرم شدن نام برده می‌شود (1-2). اگر این پدیده‌های دمای عملی و تغییر فرم در دماهای بالا رخ دهد، پازیبی و تبلور مجدد دینامیکی نامیده می‌شوند و اگر پس از پایان عملی و تغییر فرم و در حین سرد شدن از دماهای بالا و بر پایه مراحل متوالی از عملیات تغییر فرم گرم صورت گیرند، به پازیبی و تبلور مجدد استاتیکی 2 موسوم خواهند بود.

پازیبی و تبلور مجدد دینامیکی
مکانیکاً در حین تغییر فرم گرم با سرعت کاری که در دماهای بالا می‌تواند توسط پدیده‌های پازیبی و تبلور مجدد دینامیکی خشک می‌شود. پازیبی دینامیکی با امتحان نابجایی و تخلیه مجدداً آنها در مرز دانه‌های اصلی و تولید دانه‌های فرعی، ضمن حفظ ساختار دانه‌های فلزم و اندام دانه‌های اصلی، تحقیق می‌یابد (2)؛ در حالی که تبلور مجدد دینامیکی با مکانیزم جوانه‌زنی و رشد دانه‌های جدید در مرز دانه‌ها و یا مرزهای دو فلزی تأمین می‌گردد و بیشتر تغییر کامل ریز ساختار فلزی می‌شود. برای بررسی این گونه تحولات از منحنی‌های سیلان گرم استفاده می‌شود که در شکل 1 دو نوع آن نشان داده شده است.

1- Dynamic Recrystallization & Recovery
2- Static Recrystallization & Recovery
شکل 1 - دو نوع منحنی سیلان در عملیات تغییر قرموگر [5]

در صورتی که مکانیزم نرم شدن در حین کارگرم از نوع بازیابی دینامیکی باشد، نش سیلان ابتدا تا حد ماکزیمم افزایش یافته و سپس ثابت باقی می‌ماند (شکل a - 1). در مواردی که نرم شدن ناشی از بازیابی دینامیکی کم باشد، به تدریج سنتیت ناپایداری با ادامه تغییر قرموگر افزایش می‌یابد و در شرایطی که به حد بحرانی برسد تیلور مجدد دینامیکی رخ خواهد داد. در جنین شرایطی منحنی سیلان فاز یک اوج در مقدار تنها تغییر می‌شود و نش واقعی با تیلور مجدد دینامیکی کاهش می‌یابد و به نرم حاد و پایدار (\(\sigma_0\)) می‌رسد که در آن کار سختی ناشی از ادامه تغییر فرم و نرم شدن به تعادل رسیده اند (شکل b - 1).

تیلور مجدد دینامیکی معمولاً به ازار یک کرنش بحرانی (\(\sigma_0\)) آغاز می‌شود واین حد بحران شیمیایی فلوز اندو در اولیه و سرم‌ده کرنش بستگی دارد [4]. اکثر تحقیقات انجام گرفته روی نوادها [4 و 6] نشان می‌دهند که در حین کارگرم در فاز اولیه تیلور مجدد دینامیکی می‌تواند
بازیابی و تیلور مجدد استاتیکی

پذیرفته‌ی بازیابی و تیلور مجدد استاتیکی در اثر افزایش انرژی کرنش ذخیره شده در فلزی که در حالت سرد تغییر فرم یافته و سپس در دماهای ثابت نگهداری شده و یا در یک فلز پس از تغییر فرم گرم می‌دهد. این پذیرفته‌ی معمولأ از بازیابی استاتیکی شروع شده و تا مرحله تیلور مجدد استاتیکی و سپس رشد دانه‌ها گذشته زمان ادامه می‌باشد. معمولأ برای انجام تیلور مجدد استاتیکی یک مقیار بحرانی کرنش لازم است؛ به طوری که در کرنش‌های کمتر از این مقیار مکانیزم اصلی نرم شدن فقط ناشی از بازیابی استاتیکی و در مقادیر بیشتر از این تیلور مجدد استاتیکی خواهند بود [9]. برای بیان سرعت نرم شدن ناشی از پذیرفته‌ی معمولأ از نسبت نرم شدن، استفاده می‌شود. این نسبت از طریق آزمایش‌های تغییر فرم گرم در مرحله اول به دست می‌آید و به صورت:

\[X = \frac{\sigma_1 - \sigma_2}{\sigma_1 - \sigma_0} \] \hspace{2cm} (1)

نوشته‌ی می‌شود که در آن \(\sigma_1 \) به ترتیب تنش ماکزیمم و تنش تسلمی در مرحله اول و \(\sigma_2 \) تنش تسلمی در مرحله دوم است.

آزمایش‌ها

در این پژوهش جهت بررسی نقش پارامترهای تغییر فرم گرم و اثر گرین بر روی مکانیزم‌های

1- Interstitial Free Steels
2- Softening Ratio
تمام نمونه‌های فولاد‌های مورد تحقیق از آزمایش‌های فشار گرم استفاده شد. جهت نوع فولاد میکرو آلیاژی $\text{Ti} / 0.5$, $\text{Si} / 0.15$, $\text{Mn} / 0.5$ و با مقادیر مختلف کربن (جدول 1) نمونه شدند.

جدول (1): ترکیب شیمیایی فولادها میکرو آلیاژی نهی شده

<table>
<thead>
<tr>
<th>جدول</th>
<th>نوع فولاد</th>
<th>%C</th>
<th>%Si</th>
<th>%Mn</th>
<th>%S</th>
<th>%P</th>
<th>%Ti</th>
<th>%AI</th>
<th>%N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>0.025</td>
<td>0.022</td>
<td>0.015</td>
<td>0.012</td>
<td>-</td>
<td>0.005</td>
<td>-</td>
<td>0.002</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>0.03</td>
<td>0.035</td>
<td>0.03</td>
<td>0.083</td>
<td>0.088</td>
<td>0.078</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>0.05</td>
<td>0.035</td>
<td>0.045</td>
<td>0.024</td>
<td>0.037</td>
<td>0.094</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>0.15</td>
<td>0.03</td>
<td>0.005</td>
<td>0.091</td>
<td>0.097</td>
<td>0.082</td>
<td>0.007</td>
<td></td>
</tr>
</tbody>
</table>

فولادها، فوق از طریق ذوب در کوره‌ای توانسته با عناصر مختلف سطحی جهت تغییر ساختار ریختگی به ساختار کار گرم شده فولاد شود (میزان 35٪ کاهش ارتفاع تختالیا) و متعاقباً جهت یکنواخت کردن و حذف ناهماهنگی‌های ساختاری ناشی از کار گرم به مدتهاً نیم ساعت در دمای 1200 درجه سانتی‌گراد به داراً سرد شدند. جهت نمونه‌های فشار گرم، تختالیاً فوق در جهت طولی پر شده شدند و سپس به توسط عملیات ماشین کاری نمونه‌هایی با قطر 8 و طول 12 میلی متر از آنها تهیه شد.

به منظور بررسی تأثیر شرایط تغییر فرم گرم بر رفتار تبلور مجدد دینامیکی فولاد‌های مورد آزمایش، یک سری آزمایش‌های فشار گرم پیوسته در دماهای 0 تا 800 درجه سانتی‌گراد جهت پررسی در فاز فریت و دماهای 900 تا 980 درجه سنتی‌گرادجهت مطالعه در فاز اوسنتیت و در سرعت‌های کرنش مختلف 0-10 تا 100 تانگه/گرفته. به عوامل به منظور مطالعه اثر عوامل مختلف بر تبلور مجدد استاتیکی از آزمایش‌های فشار گرم در مرحله ای استفاده شد. این آزمایش‌ها در دماهای 650 و 700 درجه سانتی‌گراد (برفاز فریت) و 900 و 950 درجه سانتی‌گراد (برفاز اوسنتیت) به ازای زمان‌های نگهداری مختلف و با سرعت کرنش ثابت (1-3) و لوله با پیش کرنش‌های منفی در دو
ناتایج و بحث
الف - رفتار منتجهای تشک - کرنش در آزمایشهای دینامیکی
متجه ی سیلان فولادهای مورد تحقیق که در ناحیه فریج و درسرعت کرنش 10^{-5} \times 1 به وسیله نشان داده شده است. همان طور که در شکل 2 و 3 به ترتیب برای فولادهای C و A به ترتیب دیده می‌شود، منتجهای تشک - کرنش فولاد A هم از نوع بازیابی و هم از نوع تبلور مجد دینامیکی است، به طوری که در دمای 550\degree C رفتار آن کاملاً از نوع بازیابی است. لیکن با افزایش دمای اوج تشک در منتجهای آن نمایان می‌شود که باید گرفتار خانه دانه تبلور مجد دینامیکی در این شرایط است. همچنین منتجهای تشک کرنش فولاد C (شکل 2) نشان می‌دهد که تحت شرایط فوق در این فولاد بازیابی دینامیکی رخ داده است و تنها در دمای 750\degree C اوج ضعیفی ناشی از تبلور مجد دینامیکی در منتجهای سیلان فولادهای D و C نیز در ناحیه اوضاعی و در سرعت‌های کرنش مختلف در
شکل‌های ۴ و ۵ نشانگر موقعیت پیدایش تیلور مجدید دینامیکی در ناحیه مذکور است که به پژوهش‌های سایر محققان سازگار است [۱۱ و ۱۳].

عوامل مؤثر بر مکانیزم نرم شدن دینامیکی در ناحیه استینینت - اساساً شروع تیلور مجدد دینامیکی در فولادها به ترکیب شیمیایی، دما و سرعت کرنش بستگی دارد [۱۱ و ۱۲]. این وابستگی معمولاً از انقلاب کرنش اوج به سمت کرنش‌های پیشتر و با کمتر در روی منحنی سیلان مشخص می‌شود.

این مدل بر تیلور مجدد دینامیکی - از پرسپکتیف تیلور مجدد دینامیکی فولادهای د و C در ناحیه دمایی استینینت (شکل‌های ۴ و ۵) ملاحظه می‌شود که در یک سرعت کرنش ثابت با انفراش دما اولار است، که که کاهش کرنش به ترتیب راه و تنازی کرنش اوج (ک) در مقادیر کمتری ظاهر می‌شود. از آنجا که کرنش اوج در منحنی سیلان (گ) در اندازه‌گیری شروع تیلور مجدد دینامیکی است، لذا به خوبی دیده می‌شود که با افزایش دما شروع تیلور مجدد دینامیکی چلونی می‌افتد. از طرف دیگر علاوه بر کرنش اوج، با افزایش دما شیب منحنی سیلان در فاصله بین نقطه ماکزیمم و ناحیه پایدار منحنی انわり پایانه است. در این ضایع منحنی سیلان در این ناحیه پایانگر شروع تیلور مجدد دینامیکی است.

می‌توان نتیجه گرفت که افزایش دما نتیجه تیلور مجدد را با جلوگیری به کمک موجب تسریع در انجام آن نیز شده است. در حقیقت علت اصلی کاهش کرنش اوج و انفراش شروع تیلور مجدد با دما را می‌توان با کاهش کرنش برای لازم برای شروع تیلور مجدد دینامیکی و انفراش نیروی محرکه لازم برای ادامه تیلور مجدد نسبت داد [۱۴].

این سرعت کرنش بر تیلور مجدد دینامیکی - تاثیر سرعت کرنش بر شروع تیلور مجدد دینامیکی در یک دما ثابت بطور نمونه برای فولاد C در شکل ۶ نشان داده شده است.

همانطور که در شکل فوق دیده می‌شود، با افزایش سرعت کرنش به تدریج کرنش اوج به سمت کرنش‌های پیشتر می‌کند و در عمق شروع تیلور مجدد دینامیکی به تدریج و رخ تیلور مجدد دینامیکی در سرعت‌های کرنش بالا کمتر است. در واقع علت همین اندازه‌گیری در فولادهای فوق را می‌توان به سبب تغییر در سرعت‌های نیز انفراش می‌یابد [۱۱، ۱۵ و ۱۶]. از آنجا که سرعت کرنش سنتیک تغییر در سرعت‌های نیز انفراش می‌یابد [۱۱، ۱۵ و ۱۶]. از آنجا که سرعت کرنش سنتیک تغییر در سرعت‌های نیز انفراش می‌یابد [۱۱، ۱۵ و ۱۶]. در انتهای و لوپاژ دمایی به خوبی می‌توان استنتاج کرد که هر سرعت کرنش افزایش می‌یابد.
شکل ۲ - منحنی‌های نیروی فولاد A در سرعت کرنش ۵×۱۰⁻۴ و در دمای‌های مختلف

شکل ۳ - منحنی‌های نیروی فولاد C در سرعت کرنش ۵×۱۰⁻۴ و در دمای‌های مختلف
شکل 4 - منحنی‌های تنش–کرنش فولاد C در سرعت کرنش 10^{-5} و 1×10^1 در دامنه‌های مختلف

شکل 5 - منحنی‌های تنش–کرنش فولاد D در سرعت کرنش 10^{-5} و 1×10^1 در دامنه‌های مختلف
شکل ۶ - منحنی‌های تنش–کرنش فولاد C در دمای ۹۸۰°C و در سرعت‌های کرنش مختلف

سیستمی تشکیل رسوبات TiC، Ti(CN) در فولادهای مورد تحقیق بیشتر می‌شود و در تریه‌ی تأثیر بیشتر در جلوگیری از شروع و نخ تبلور مجدد دینامیکی از خود باید خواهد گشت.

الکربنی بر تبلور مجدد دینامیکی/آستینیت - شکل ۷.۷ اثر کربن بر روی کرنش اوج (پ) در دمای ۹۵°C و به ازای سرعت‌های کرنش مختلف راشان می‌دهد. همان طور که در این شکل دیده می‌شود کرنش اوج در تمام سرعت‌های کرنش مورد آزمایش به تدریج با افزایش کرین در فولاد بیشتر می‌شود.

به عبارت دیگر با زیاد شدن کرین در فولاد شروع تبلور مجدد دینامیکی/آستینیت به تأخیر می‌آید و هر چند به نظر بیشمار از معققتان [۹] و [۱۷] اثر کربن در تأخیر تبلور مجدد دینامیکی/آستینیت تایید است، اما تحقیق حاضر نشان می‌دهد که کربن تأثیر زیادی در به تأخیر انداختن تبلور مجدد داشته است. در واقع حالت اصلی چنین رفتاری در فولادهای مورد تحقیق مربوط به نشانه‌های رسوبات کربنیت‌های تشکیل یافته در فولادهای آستینیت است. از نظر کربنیتشکل این رسوبات را در نتیجه کسیر حجمی رسوبات فوق با تغییر سرعت کرنش و ترکیب شیمیایی فولاد تغییر می‌کند. لذا سیستم

و کسر حجمی این رسوبات در فولادهای با دصرد کرین بالاتر به مراد بیشتر استفاده از فولادهای با دصرد
شکل ۲- تغییرات کرنش اوج (\(e_p\)) با انزایش کرنش در دمای ۹۵۰°C و در سرعت‌های کرنش مختلف

کرین کمتر است. بنابراین علت اصلی به تأخیر افتادن تبلور مجدد دینامیکی اوسنتیت در فولادهای مورده آزمایش علاوه بر کرین محلول، از رسوبات کربنی دیده‌ای تیتانیم‌ناشی می‌شود. همان طور که قبلاً ذکر شد این‌گونه رسوبات در موز دانه‌های اصلی و هم‌فروشی تشکیل شده و از شروع و پیش‌رشید تبلور مجدد جلوگیری می‌کنند.

تأثیر شرایط تغییر فرم بر روی تنش اوج - به طورکلی اکثر فلزات که در حین تغییر فرم گرم رفتار تبلور مجدد دینامیکی از خود نشان می‌دهند، از رابطه زنر- هولمن

\[Z = e^\left(\frac{Q}{RT}\right) \cdot A e_{p}^{n} \]

تبدیل می‌کند. در این رابطه، \(Q\) توان تنش، \(A\) و \(n\) ثابت دما، \(T\) و \(R\) ثابت

1- Zener Holloman
ب - بررسی تغییرات ریز ساختاری در ناحیه فریت

نتایج به دست آمده اروری فولادهای مرد تحت تاثیر فریت تابیتی در ناحیه فریت نشان می‌دهدکه مکانیزم ترم شدن در فاز فریت در حین تغییر فرم گرم هم از نوع بازیابی و هم از نوع تبلور مجدد دینامیکی است.

از بررسی رفتار ترم شدن فریت در فولاد A (شکل 2) به خوبی دیده می‌شود که در یک سرعت کرنش ثابت با انرژی زمان به متوسط سیلان نطفه اوج نمایش دهنده نشان می‌دهد که دلیل تبلور مجدد دینامیکی در این فولاد است. این نتایج با نتایج نجفی زاده و جووُنیس [7] و [8] سازگار است.

شکل‌های 98 و 99 تغییرات ریز ساختاری فولاد A راک در دمای 750°C و سرعت کرنش 1-05 10−3 کیلو نیترات تغییر فرم یافته، در حالت‌های قبل و بعد از تغییر فرم نشان می‌دهد.

همان‌طور که در شکل 98 مستند قابل تغییر فرم دانه‌های این فولاد نسبتاً درشت (d = 12 μm) هستند. تاکنین در اثر تغییر فرم (t = 91) و تبلور مجدد دینامیکی دانه‌ها ریزتر (d = 57 μm) می‌شود.

بررسی ریز ساختاری فولاد B و C در همین شرایط و مقایسه آن با نمونه‌های نشان و کرنش به دست آمده نشان می‌دهد که مکانیزم ترم شدن در این دو فولاد از نوع بازیابی دینامیکی است.

شکل 10 تغییرات ریز ساختار فولاد C را نشان می‌دهد همان طور که در تصویر میکروسکوپی این فولاد قبل از تغییر فرم پیدا می‌شود (شکل 10A) ساختار دانه‌ای کامل‌ی محاوری و غیر یکنواخت بوده و مرز دانه‌ها کاملاً صاف است. گرچه به تغییر فرم و در ازای کرنش 1-05 دانه‌ها مقاوم تغییر فرم یافته و کشیده‌های می‌شود و جووُنیس این تغییر راک که در طبیعت و در مزره‌های زیر بین فلز مشاهده می‌شود (شکل 10B) با ادامه تغییر فرم، در کرنش 6/0 که در شکل 10D دیده می‌شود، دانه‌ها کاملاً تغییر فرم یافته و کشیده‌پذیری دانه‌ها به خوبی پیداست. در این شکل مرز دانه‌ها دانه‌دانه شده‌است.
که نشانه شروع تبلور مجدد دینامیکی است [8 و 11]. همچنین، در مرز دانه‌های اولیه جوانه‌های کوچک‌سوزرده می‌شوند که ناشی از تبلور مجدد دینامیکی پروکتی و به صورت شب‌های دینامیکی 1 در طی عمل کرنش رشد کرده‌اند و با یک‌دیگر در دیگر سطح این ساختار میکروسکوپی به میزبانی راه دارند در کرنش 1/2 نشان می‌دهد دانه‌ها کاملاً کندیده و دانه‌ها به صورت دندان‌های اره در آماده‌اند. همچنین در مرز دانه‌های اولیه نیز نیز نشانه‌های بسیار کوچک که ناشی از تبلور مجدد دینامیکی و شب‌های دینامیکی می‌شوند.

تغییرات زیست‌ساختاری فولاد در دمای 700 در در سرت کرنش 1.5-1.1 در شکل 11 نشان داده است. شکل 11 ساختار میکروسکوپی این فولاد را قبل از شروع تغییر فرم نشان می‌دهد. همانطور که در تصویر فوق دیده می‌شود ساختار میکروسکوپی آن شامل دانه‌های محوری نسبتاً درشت با مرزهای کاملاً صاف است. در اثر اعمال تغییر فرم در کرنش 1/2 (شکل 11) دانه‌ها کشیده شده و مرز دانه‌ها نیز دانه‌دانه‌گر در دن‌های انگشتی به علاوه در بعضی قسمت‌های نشانه‌هایی از پرآمادگی در مرزهای که دایل بر شروع تبلور مجدد دینامیکی است دیده می‌شود.

شکل 11 ساختار میکروسکوپی این فولاد را در اثر کرنش 1.5 نشان می‌دهد. همانطور که در تصویر فوق بیان شد دانه‌های جدید حاصل از تبلور مجدد دینامیکی در مرز دانه‌های اولیه مشکل شده‌اند.

به طور کلی و بررسی تغییرات ساختاری فریت در دو فولاد سه می‌توان نشان داد که فولاد این ساختار میکروسکوپی در فریت در سرت کرنش کم شروع شده است ولی نسبت فولاد A به B کمتر است. در واقع علت آن می‌باشد که تبلور مجدد دینامیکی در فریت در فولادهای C و B نشان از رسوایی تیتانیم دار که از شروع و ادامه تبلور مجدد جلوگیری می‌کند.

ج - بررسی رفتار فولادها در آزمایش‌های استاتیکی

منحنی‌های تنش - کرنش فولادهای سورد تحقیق از طریق آزمایش‌های فشار گرم دومرحله ای

1- Metadynamic Recrystallization 2- Bulging
شكل 8 - رابطه بین پارامتر زنن - هولمن با تنش پیک

D کارکرد C کارکرد B نیرو B نیرو A نیرو
شکل 9 - ساختار میکروسکوپی فولاد A (10×0/035°C) قبل از تغییر فرم 5 بعد از تغییر فرم a
شکل 11- تغییرات ریز‌ساختار فولاد B1 (300/0 C) هنگامی که در دمای 700°C در سرعت کرونی 10^{-5} \times 10^{-2} فرم یافته است. (8) تبلیغ از تغییر فرم (b) در کرونی 4/0 C در کرونی 10^{-5} \times 10^{-2}.
استلال

(استاتیکی) به دست آمده. شکل 12 رفتار فولاد C را در دو ناحیه دماوی اوسنتی (C) و
فریت (C) به ازای زمانهای نگهداری متفاوت نشان می‌دهد. همان‌گونه که در این شکل دیده
می‌شود، با نگهداری نمونه‌ها در بین دو مرحله فشار، نقطه تسلیم منحنی سیلان مرحله دوم کاهش
پیدا می‌کند و به تدریج با افزایش زمان نگهداری تنها تسلیم در مرحله دوم با مرحله اول هم‌متر می‌شود.
به‌طور کلی نقطه تسلیم در منحنی فشار مرحله دوم نشان‌گر خیز دادن بازیابی و تبلور مجدد در
ماهه است که به تدریج با افزایش زمان پیچیدگی که و در نهایت ای که تنها تسلیم مرحله دوم با
منحنی فشار مرحله اول را در ماده کاملاً می‌شود.

همانطور که در شکل 13 دیده می‌شود در ناحیه اوسنتی تبلور مجدد بعد از حدود 50 ثانیه
در این فولاد کاملاً شکسته‌است، در حالی که در ناحیه فریت (شکل 14) ناحیه‌ای متفاوت که
دولی (پیش کرنش) بیشتر از مقدار آن در ناحیه اوسنتی بوده، حتی با گذشت زمانهای طولانی تر،
تبلور مجدد در این کاملاً نشده است. به عبارت دیگر مقاومت گرافیت در دمای‌های مختلف نشان می‌دهد
که وقتی نسبت به میزان پیش کرنش تقسیم می‌شود به نحو بازیابی و تبلور مجدد استاتیکی داشت. این
هم در دمای سرعت تبلور مجدد استاتیکی - شکل 13 اثر دما بر پیچیدگی تبلور مجدد استاتیکی
اوستینی و فریت را در فولاد D نشان می‌دهد. همان‌طور که در این شکل دیده می‌شود با افزایش
دما در مناطق اوستینی (C) و 90 درجه سانتی‌گراد) و فریت (C) و 70 درجه سانتی‌گراد) نیز
پیچیدگی تبلور مجدد سریعتر شده است. همچنین در این شکل دیده می‌شود که نسبت گرافیت
در محدوده دماهای فریت حتی به ازای زمانهای نگهداری طولانی تر چنین تسلیم است که به تدریج نسبی است. در
حالی که این نسبت در محدوده دماهای اوستینی در زمانهای کوتاه‌تر به ریسی است و در واقع
تبلور مجدد در این کاملاً نشده است. به عبارت دیگر تنها در فولاد D نشان می‌دهد که
نحوه تبلور مجدد استاتیکی در ناحیه اوستینی بیشتر از ناحیه فریت است.

از آنجا که مکانیزه‌های تن تشن استاتیکی در فریت و اوستینی یکسان بوده و از طریق تحلیل
مرزهای فرعی و جوانه‌زی و رشد بر روی مرزهای اصلی و فرعی صورت می‌گیرد، لذا تفاوت
اصلی در ترتیب تبلور مجدد استاتیکی در این دو ناحیه میزان دارد، به طوری که با افزایش دما
مرحله بازیابی استاتیکی که با حذف و تابوی تابیت و تحلیل مرزهای فرعی همراه است سریعتر
شد و متعاقباً شروع تبلور مجدد تسریع می‌شود. نکته قابل توجه دیگر که در ارتقاء بافولاهای
شکل ۱۲- منحنی‌های تنش-گرنش فولاد C در هر دو مرحله فشار و به ازای زمان‌های نگهداری مختلف

این موارد نظر وجود دارد، نقش رسوبات استاتیکی کربنیت‌های یودیتی در آن است.

از آنجایی که کسر حجمی رسوباتی نظیر TiC و Ti(CN) که در فاز فریت تشکیل می‌شوند.
نتیجه‌گیری‌های ترکیبی این فولاد در محدوده‌های نخل‌بندی، از زمان به زمان به‌طور کلی زیاد می‌شود در شکل (۱۵۰) به نمایش می‌گذارد. در نهایت این زمان‌ها و تنوع حجمی رسانه‌های استات‌کیو با توجه به دامنه‌های به‌طور کلی زیاد می‌شود.
شکل ۱۲ - مثلث‌های نرم شدن نواره \(D_{110C} \) قلو \(0.115\% C \) و حسب زمان در دماهای مختلف

\[
\text{Log} \, t(0.5), \text{Recrystallization}
\]

شکل ۱۳ - اثر کربن بر روی شما لاژم چهت ۷۵ تیلوه مجدد (۰.۵) در دماهای مختلف
شکل ۱۵ - تغییرات ریزسخت‌پذیری در ۷۰۰ درجه سانتی‌گراد درآماده شدن تیتانیوم مجدد استاتیکی

۵۰۰ درجه سانتی‌گراد (C) در آماده شدن تیتانیوم مجدد استاتیکی

۰.۷۵ درجه سانتی‌گراد (C) ۰.۴ درجه سانتی‌گراد (C) ۰.۲ درجه سانتی‌گراد (C) ۰.۰ درجه سانتی‌گراد (C)
نتیجه گیری
الف - ازبررسی نتایج آزمایش‌های دینامیکی بر روی فولادهای مورد تحقیق موارد زیر استنتاج می‌شود:

1- مکانیزم نرم شدن دینامیکی در تمام فولادهای مورد تحقیق در ناحیه اوسنتیت از نوع تیلور مجدد دینامیکی و در فولادهای A و B عمدها از نوع تیلور مجدد دینامیکی و در فولادهای C و D عمدها از نوع تیلور بایابای دینامیکی است.

2- عامل اصلی در جلوگیری از تیلور مجدد دینامیکی در فریت وجود عنصر بین شیمی کربن و نیتروژن است. که با تشکیل رسوبات ناشی از تغییر قرمز مانگی در براز تیلور مجدد دینامیکی به وجود می‌آورد.

3- رفتار تیلور مجدد دینامیکی فولادهای مورد تحقیق در ناحیه دماهای اوسنتیت نشان می‌دهد که با افزایش دما و کاهش سرعت کرنش، کرنش اوج (E) به جلو و با کاهش دما و یا انرژی سرعت کرنش کاهشی اوج به عقب می‌افتد. به عبارت بهتر تیلور مجدد دینامیکی اوسنتیت در مقایسه با بالایی Z به تأخیر می‌یافتد و با بالعکس.

ب - بررسی تأثیر آزمایش‌های استاتیکی بر روی فولادهای مورد تحقیق نشان می‌دهد که:

1- با افزایش دما، تغییر ریزابی و تیلور مورداستاتیکی در ناحیه فریت و اوسنتیت افزایش می‌یابد.

2- تیلور مجدد استاتیکی در ناحیه اوسنتیت پیشتر از ناحیه فریت است، که این به دلیل پیشمردندو بهبودی افزایش کسر حجمی رسوبات در ناحیه اوسنتیت نسبت به ناحیه فریت است.

3- در هر دو ناحیه فریت و اوسنتیت با افزایش کربن تیلور مجدد استاتیکی کاهش می‌یابد.
قداردانی
بدين وسيله از دانشگاه صنعتي اصفهان و از شرایط همانتگي تحقیقات و معاونت محترم
پژوهشی دانشگاه صنعتي اصفهان برای تامين هزینه های این پژوهش، سعی ماننه تشكر می شود.

