اثرکردن برتحولات ریزساختاری و رفتار تغییر فرم گرم فولادهای تیناتیم‌دار

عباس تاجیلی زاده* - مسعود قربانی**

چکیده

در این مقاله اثر کردن رفتار تغییر فرم گرم برایی مکانیزم‌های نرم شدن استاتیکی و دینامیکی فولادهای میکروالپایی تیناتیم دار در دو ماده نرمال و دومین میکروالپایی مورد بررسی قرار گرفته است. برای شناسایی این تغییرات به کار رفته‌ها و اندازه‌گیری‌ها، و TiC مایع‌بندی مجد می‌تواند مورد استفاده قرار گیرد.

می‌توان به حساب نشان داد که اندازه‌گیری‌ها به تأمین اندازه‌گیری‌ها و تغییرات از آزادی و رسوبات TiCN و TiC پیامده این ماده‌های میکروالپایی بافت‌های تیناتیم‌دار و منابع اصلی آن وجود دارد. در نتیجه، می‌توان به افزایش فرآیندهای و تغییرات در بافت‌های تیناتیم‌دار آزمایش‌های فنی شده در مراحل مختلف و نشان می‌دهد که با تغییرات میکروالپایی و ترکیب میکروالپایی تیناتیم‌دار در هر و نتیجه‌گیری و افزایش می‌باید و افزایش گرم موجب کاهش نرخ تبلور مجدد استاتیکی در هر و نتیجه‌گیری می‌شود.

* دانشیار دانشکده مهندسی مواد - دانشگاه صنعتی اصفهان
** فارغ التحصیل کارشناسی ارشد دانشکده مهندسی مواد - دانشگاه صنعتی اصفهان
استقلال

مقدمه

معلوماً تغییر فرم نولادها در دماهای بالا با تغییرات ساعتی و تحولات فازی توأم است. این مسئله باعث می‌شود که تحت شرایط مختلف و تولید از نظر صرفه، میزان تغییر فرم، دما و تغییرات ساعتی و ... ساعت‌های مکروسکوپی و خصوصیات مکانیکی محصولات تولید شده نهایی متفاوت باشد.

برای دستیابی به مشخصات مکانیکی بالاتر در محصولات کار گرم شده، لازم است که پارامترهای مؤثر بر تغییر فرم و همچنین تحولات ریز ساعتی در دماهای بالا شناخته شوند. از تحولات ریز ساعتی که معمولاً در فرآیندهای تغییر فرم گرم رخ می‌دهند، از پدیده‌های بازیابی و تبلور مجدد استاتیکی و دینامیکی با عنوان مکانیزم‌های ترم شدن نام برده می‌شود [1-6]. اگر این پدیده‌های در دماهای بالا رخ دهد، باید با دقت و تبلور مجدد دینامیکی 1 نامیده می‌شوند و اگر پس از پایان عمل تغییر فرم و در حین سرد شدن از دماهای بالا و یا پس از مرحله نتوانی از عملیات تغییر فرم گرم صورت گیرند، به بازیابی و تبلور مجدد استاتیکی 2 موسوم خواهند بود.

بازیابی و تبلور مجدد دینامیکی

معلوماً در حین تغییر فرم گرم با سرعت کرنش ثابت دانسیتی ناجابه‌شدن در فاز انرژی‌های مشابه موجه کار سختی در دما و شکل از فضای بازیابی و تبلور مجدد دینامیکی خشک می‌شود. بازیابی دینامیکی با امحاء ناجابه‌شدن و ترم مجدد آنها در مرز دانه‌ها اصلی و تولید دانه‌ها فرعی، ضمن حفظ ساعت‌بندی دانه‌ها فازی و اندکی دانه‌های اصلی، تحقیق می‌یابد [3]. در حالی که تبلور مجدد دینامیکی با مکانیزم جوانه‌زنی و رشد دانه‌های جدید در مرز دانه‌ها و یا مرزهای دو قلوی انجام می‌گیرد و موجب تغییر کاملاً ریز ساختار فازی می‌شود. برای بررسی این گونه تحولات از منحنی‌های سیلان گرم استفاده می‌شود که در شکل 1 دو نوع آن نشان داده شده است.

1- Dynamic Recrystallization & Recovery 2- Static Recrystallization & Recovery
شکل ۱ - دو نوع منحنی سیلان در عملیات تغییر فرم [۵]

در صورتی که مکانیزم نرم شدن در حین کارگرم از نوع بازیابی دینامیکی باشد، منحنی سیلان ابتدایی تا حد مکانیزم افزایش باشد و سپس ثابت باقی می‌ماند (شکل a - ۱). در مواردی که نرم نرم شدن ناشی از بازیابی دینامیکی کم باشد، به تدریج سطح ناشی از بازیابی دینامیکی رخ خواهد داد. در نهایت اگر نرم شدن سیلان فلح با یک اوج در مقدار نشته پسین مادران می‌شود در هنگامی که دنده سیلان ناشی از تغییر فرم و نرم شدن به تعادل رسیده اند (شکل b - ۱) تبلور مجدد دینامیکی معمولاً به ازای یک کرنش بحرانی (ε) آغاز می‌شود و حد به ترتیب شیمیایی فلز، اندام زنده اولیه و سپس کرنش بستگی دارد [۴]. اکثر تحقیقات انجام گرفته روی فولادها [۳ و ۴] نشان می‌دهند که در حین کارگرم در فاز اوستنیت تبلور مجدد دینامیکی می‌تواند
استقلال

رخ دهد. لیکن در مورد فاکتور تحقیقاتی کمتر انجام گرفته و تصور عمومی آن است که مکانیزم نرم شدن در این فاکتور اصلی منجر به رشد و گسترش جاری است. از جمله مکانیزم‌هایی که در نظر گرفته شدند، می‌توان به ضعیف کردن این مکانیزم خواص مکانیکی محصولات کاری کرم تابه‌های داد.

پژوهشی و تیلور مجدد استاتیک

پژوهشی و تیلور مجدد استاتیک در اثر انباشتن اثرات ریزش ذخیره شده در فلز که در حالت سرد تغییر فرم یافته و سپس در دمای ثابت نگهداری شده و یا در یک فاز پس از تغییر فرم گرم رخ می‌دهد. این پژوهشی معمولاً از پژوهشی استاتیک شروع شده و تا مرحله تیلور مجدد استاتیک و سپس رشد دانش‌ها گسترش زمان ادامه می‌یابد. معمولاً برای انجام تیلور مجدد استاتیک یک مقدار بحرانی کرنش لازم است؛ به طوری که در کنار شیب کمتر از چهار مقدار مکانیزم اصلی نرم شدن فقط ناشی از پژوهشی استاتیک و در مقادیر بیشتر نرم شدن تیلور مجدد استاتیک خواهد بود. برای بیان سرعت نرم شدن ناشی از پژوهشی معمولاً از نسبت نرم شدن، استفاده می‌شود. نسبت نرم شدن، نسبت از طریق آزمایش‌های تغییر فرم گرم دو مرحله ای به دست می‌آید و به صورت:

\[X = \frac{\sigma_1 - \sigma_2}{\sigma_1 - \sigma_0} \]

نوشتته می‌شود که در آن \(\sigma_0 \) به ترتیب تنش ماکزیمم و تنش تسلیم در مرحله اول و \(\sigma_2 \) تنش تسلیم در مرحله دوم است.

آزمایش‌ها

در این پژوهش چهت بررسی نقش پارامترهای تغییر فرم گرم و اثر کریستال بر روی مکانیزم‌های

| 1- Interstitial Free Steels | 2- Softening Ratio |
نرم‌شدن فولادهای مورد تحقیق از آزمایش‌های فشار گرم استفاده شد. چهار نوع فولاد میکرو آلیاژی
تیتانیم دار برای تأیید ان منظور با ترکیب پایه Si12% Mn1% Al1/2% Ce5/2% با مقادیر
مختلف کربن (جدول 1) تهیه شدند.

جدول (1): ترکیب شیمیایی فولادها میکرو آلیاژی نیمه شده

<table>
<thead>
<tr>
<th>نوع فولاد</th>
<th>%C</th>
<th>%Si</th>
<th>%Mn</th>
<th>%S</th>
<th>%P</th>
<th>%Ti</th>
<th>%Al</th>
<th>%N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.25</td>
<td>1.22</td>
<td>0.15</td>
<td>0</td>
<td>0.2</td>
<td>0.07</td>
<td>0.3</td>
<td>0.025</td>
</tr>
<tr>
<td>B</td>
<td>0.3</td>
<td>0.385</td>
<td>0.082</td>
<td>0.07</td>
<td>0.8</td>
<td>0.08</td>
<td>0.25</td>
<td>0.06</td>
</tr>
<tr>
<td>C</td>
<td>0.75</td>
<td>0.075</td>
<td>0.165</td>
<td>0.05</td>
<td>0.2</td>
<td>0.02</td>
<td>0.7</td>
<td>0.009</td>
</tr>
<tr>
<td>D</td>
<td>0.15</td>
<td>0.322</td>
<td>0.025</td>
<td>0.15</td>
<td>0.09</td>
<td>0.02</td>
<td>0.72</td>
<td>0.007</td>
</tr>
</tbody>
</table>

فولادهای فوق از طریق ذوب در کوره‌های قابی تحت خلاء تهیه شد و سپس به صورت تخته‌برداری با
ابعاد 20x20x20cm در 1/6x7/19 هرته گی شدند. تخته‌برداری ریخته شده پس از ترشکاری سطحی جهت
تغییر ساختار ریختگی به ساختار کار گرم شده فوری شده (میزان 20/3/20 کاهش ارتفاع تخته‌برداری) و
متعاقباً جهت یکنارساندن و جذب ناهماهنگی‌های ساختاری ناشی از کارگرم به مدت نیم ساعت
در دمای 1200 درجه در سرد شدند. جهت تهیه نمونه‌های فشار گرم تخته‌برداری
فولاد در جهت طولی پریش داده شدند و سپس به توسط عملیات ماشینی تهیه شده از فولادهای با قطر 8 و
طول 12 میلی متر از آنها تهیه شد.

به منظور بررسی تأثیر شرایط تغییر فرم گرم بر رفتار تبلور مجدد دینامیکی فولادهای مورد
آزمایش، یک سری آزمایش‌های فشار گرم پیوسته در دماهای 500 تا 800 درجه سانتی‌گراد جهت
بررسی در فاز عادی و در دماهای 900 تا 950 درجه سانتی‌گراد مطالعه در فاز کم‌سختی و در
سرعت‌های کنی متفاوت 1-3 درجه در فاز عادی و در دماهای 650 و 700 درجه سانتی‌گراد (فرآیند ذوب) و 900 و 950 درجه سانتی‌گراد (فرآیند عادی) به ارزی
زمان‌های تکراری مختلف و با سرعت کنی ثابت (1-10) و با پیش کرنش شامل متفاوت در دو
الف - رفتار منتجه‌های تنش - کرنش در آزمایش‌های دینامیکی

منتجه‌های سیلان فولادهای مورد تحقیق که درناحیه فریت و درسرعت کرنش 10×1 به دست آمده‌اند، در شکل‌های 2 و 3 به ترتیب برای فولادهای A و C نشان داده شده است. همان طور که در شکل 2 به دیده می‌شود، منتجه‌های تنش - کرنش فولاد A هم از نوع پازیابی و هم از نوع تبلور مجدد دینامیکی است، به طوری که در دمای 650°C رفتار آن کاملاً از نوع پازیابی است. لیکن با افزایش دمای اوج تنش در منتجه‌های آن نمایان می‌شود که یا نگر رخ دادن تبلور مجدد دینامیکی در این شرایط است. همچنین منتجه‌های تنش-کرنش فولاد C (شکل 3) نشان می‌دهند که تحت شرایط فوق در این فولاد پازیابی دینامیکی رخ داده است و تناها در دمای 750°C اوج ضعیف‌تر ناشی از تبلور مجدد دینامیکی در منتجه‌های سیلان فولادهای C و D نیز در ناحیه اورستینت و در سرعت‌های کرنش مختلف در
شکل‌های ۴ و ۵ نشان‌گر قطعه‌ی بیشتری تیلور مجدید دینامیکی در ناحیه مذکور است که با پیوسته‌ای سایر مقفی‌ها در ناحیه [ک (۱۱ و ۱۲)] عوامل مؤثر در کانال‌های تمایل دینامیکی در ناحیه آوستینیت - اساساً شروع تیلور مجدد دینامیکی در فولانه‌ها به ترکیب است. یاد داشته که در این وابستگی معمولاً از انتقال کره‌ی اوج به مدت کره‌ی بیشتر و با کمتر در روی منحنی سیلان مشخص می‌شود.

در ناحیه دمای آوستینیت (شکل‌های ۴ و ۵) ملاحظه می‌شود که در یک سرعت کره‌ی تابث با افزایش دما اولار استتپ کم آوستینیت کاهش یافته و نهایی کره‌ی اوج (۳_۲) و در مقادیر کمتری ظاهر می‌شود . از این نتیجه کره‌ی اوج در منحنی سیلان یک فازات بالایی شروع تیلور مجدد دینامیکی است. لذا به خوبی دیده می‌شود که با افزایش دما شروع تیلور مجدد دینامیکی چنین اتفاق افتاد. از طرف دیگر علاوه بر کره‌ی اوج، با افزایش دما شبیه منحنی سیلان در فاصله‌ی بین نقطه‌ی ماکزیمم و ناحیه‌ای از انتهای منحنی افزایش یافته است. چون شبیه منحنی سیلان در این ناحیه بیانگر نرخ تیلور مجدد دینامیکی است.

می‌توان نتیجه گرفت که افزایش دما به‌عنوان تیلور مجدد دما به جلو اندماشته به‌طور متوسطی در انجام آن نیز شده است. در حالت عمومی دامنه کاهش کره‌ی اوج و افزایش نرخ تیلور مجدد با دما را می‌توان به کاهش کره‌ی بیشتری در اثر افزایش دما در شرایط افزایش و تیلور نیروی محوری لازم برای ادامه تیلور مجدد نسبت داد [۱۴].

از سرعت کره‌ی بیشتری تیلور مجدد دینامیکی - تأثیر سرعت کره‌ی شروع تیلور مجدد دینامیکی در یک دما یا تابث بطور نمونه برای فولاد C در شکل ۵ نشان داده شده است. همان طور که دمای یا تابث دما می‌شود، با افزایش سرعت کره‌ی اوج به سمت کره‌ی بیشتری بیشتر می‌گردد و در قطعه‌ی شروع تیلور مجدد دینامیکی به تعمیق چشمه و نیروی تیلور مجدد دینامیکی در سرعت‌های کره‌ی بالا کمتر است. در این حالت، دمای کاهش بیشتر و تیلور مجدد دینامیکی فوراً را می‌توان به سبب تغییرات سیلتیک روابط دینامیکی با افزایش سرعت کره‌ی نسبت داد. لذا طوری که با افزایش سرعت کره‌ی بیشتری تغییرات سیلتیک دینامیکی حاصل می‌شود [۱۱، ۱۵ و ۱۶]. از این نتیجه روابط تیلور مجدد کربن می‌توان به‌عنوان دیگری از افزایش دما و منحنی دامنه کاربردی گرایشی دیگری نشان دهنده عناصر میکروآلیاژی نقش مؤثری در جلوگیری و ممکن است باً افزایش و تیلور مجدد دانستند [۱۵]، به خوبی می‌توان استفاده کرده که هر سرعت کره‌ی اوج به‌عنوان می‌باشد.
شکل ۲ - منحنی‌های نیرو - کرنش فولاد A در سرعت کرنش 10^{-5} تا 10^{-1} و در دماهای مختلف

شکل ۳ - منحنی‌های نیرو - کرنش فولاد C در سرعت کرنش 10^{-5} تا 10^{-1} و در دماهای مختلف

Stress (Mpa)

$\text{Strain rate}=0.01$
شکل 4 - منحنی‌های تنش-کرنش فولاد C در سرعت کرنش 10^{-1} و $10^{-1} \times 1$ و در دمای‌های مختلف

شکل 5 - منحنی‌های تنش-کرنش فولاد D در سرعت کرنش 10^{-5} و $10^{-1} \times 1$ و در دمای‌های مختلف
شکل 6- منحنی‌های تنش–کرنش نولاد C در دمای 980°C و در سرعت‌های کرنش مختلف

سیستم تشکیل رسوبات در نولادهای مورد تحقیق بیشتر می‌شود و در نتیجه تأثیر

بیشتر در جلوگیری از شروع و نزدیک تبلور مجدد دینامیکی از خود باقی خواهد گذاشت.

الکترین بر تبلور مجدد دینامیکی/اوستینیت - شکل 7 اثر کرنش بر روی کرنش اوج (p0) در دمای

950°C و به ازای سرعت‌های کرنش مختلف را نشان می‌دهد. همان طور که در این شکل دیده می‌شود

کرنش اوج در تمام سرعت‌های کرنش مورد آزمایش به تدریج با افزایش کرین در فولاد بیشتر می‌شود.

به عبارت دیگر با زیاد شدن کرین در فولاد شروع تبلور مجدد دینامیکی اوستینیت به تأخیر می‌یابد.

هر چند به نظر می‌رسد از معادله [96 و 17] اثر کرین در تأخیر تبلور مجدد دینامیکی اوستینیت ناجی

است، اما تحقیق حاضر نشان می‌دهد که کرین تأثیر زیادی در تأخیر اندامتن تبلور مجدد داشته

است. در واقع علت اصلی چنین رفتاری در فولادهای مورد تحقیق مربوط به تنش رسوبات

کربنتریدهای تیناگی در این فولادهای است. از انتظار سیستم تشکیل این رسوبات و در نتیجه کسر

حجمی رسوبات فوق با تغییر سرعت کرنش و ترکیب شیمیایی فولاد تغییر می‌کند لذا سیستم

و کسر حجمی این رسوبات در فولادهایی با درصد کرین بالاتر به مراتب بیشتر از فولادهایی با درصد
کربن گرم بی‌کاری، در تأثیر افزایش تنش تبلور مجدد دینامیکی است. در مورد آزمایش علاله بر کربن محصول، از رسوبات کربن ورودی‌های تیتانیم‌ناشی می‌شود. همان طور که قبل ذکر شد این گونه رسوبات در مزرعه‌های اصلی و فرعی تشکیل شده و از شروع و پیشرفت تبلور مجدد جمله‌گیری می‌کنند.

تأثیر شرایط تغییر فرم بر روی تنش اوج - به طور کلی، اکثر فلزات که در حین تغییر فرم گرم تیتان تبلور مجدد دینامیکی از خود نشان می‌دهند از رابطه زنر - هولمن

\[Z = e^\left\{ \frac{Q}{RT} \right\} = A\sigma_p^n \]

نمی‌تونیم تغییر فرم. در این رابطه، \(Q \) نمایانگر انرژی اکتیوژاسیون برای تغییر فرم، \(T, R \) و \(n, A \) ثابت‌هایی می‌باشند.

1- Zener Holloman
پ - بررسی تغییرات ریز ساختاری در ناحیه فریت

نتایج به دست آمده بروی فولادهای مورد تحقیق در ناحیه فریت نشان می‌دهند که مکانیزم نرم‌شدن در فاز فریت در حین تغییر فرم گرم هم از نوع بازیابی و هم از نوع تبلور مجدد دینامیک است. از بررسی رفتار نرم شدن فریت در فولاد A (شکل 2) به خوبی دیده می‌شود که در بک سرعت کرنش ثابت با افزایش دما، در محدودی سیلان نطق اوج نمایان می‌شود که دلیل بر وقوع تبلور مجدد دینامیکی در این فولاد از دست نمی‌آید. این نتایج با نتایج تجربی زاده و جوناس [8] سازگار است.

شکل‌های 89 و 85 تغییرات ریز ساختاری فولاد A راک در دماهای 750°C و سرعت کرنش 0.1-0.5 بر تغییر فرم یافته، در حالت‌های قبل و بعد از تغییر فرم نشان می‌دهد.

\[
(d = 12 \mu m) \quad \text{و تبلور مجدد دینامیکی دانه‌ها ریتر (})\]

\[
(d = 57 \mu m) \quad \text{مست. لیکن در اثر تغییر فرم (}} = 0) \quad \text{و به سبب دانه‌ها مقدار تغییر فرم یافته}

\[
\text{و کشیده می‌شوند و جوانه‌های بیسیار کوچکی در بعضی نقاط و در مزر بین سطح دانه مشاهده می‌شود (شکل 9)). با ادامه تغییر فرم، در کرنش } 6/6 \text{ که در شکل 10 دیده می‌شود، دانه‌ها کاملاً تغییر فرم یافته و کشیده دانه‌ها به خوبی پیداست. در این شکل مرز دانه‌ها دانه‌دانه‌دندانه شده است.}

غذارها، 7.5 سرعت کرنش و Z، پارامتر زنر - هولمن است. از دیدگاه دانه، ${\alpha_{p}}$ و θ_{p} به Z و θ_{p} نیز با آن تغییر می‌کند [2]. در شکل‌های 88 تا 8C رابطه‌ای بین Z با تغییر اوج در ناحیه اوسنتیت به ترتیب برای فولادهای C، B، D نشان داده شده است. روشن است کنکاری اوج در استیت نانوافزایش Z (افزایش سرعت کرنش ویا کاملاً) باعث می‌شود.
که نشانه شروع تیلوار مجدد دینامیکی است [۲ و ۱۶]. همچنین، در مزر دانه‌های اولیه جوانه‌های کوچکی دیده می‌شود که ناشی از تیلوار مجدد دینامیکی بوده و به صورت شب دینامیکی در طی عمل کرونیک رشد کرده‌اند و بالاخره در شکل A۱۰۰ که ساختار میکروسکوپی این فولاد را در کرنگ ۲/۱۱ نشان می‌دهد، دانه‌ها کاملاً لکه‌دار و مرزه با صورت دندان‌های هم‌اکنون در مزر دانه‌های اولیه‌نشین‌خورده از جوانه‌های بسیار کوچکی که ناشی از تیلوار مجدد دینامیکی و شب دینامیکی هستند دیده می‌شود.

تغییرات ریز‌ساختاری فولاد B در دمای C۲۰۰ در سرعت کرنگ ۱۵۰ در شکل ۱۱ نشان داده است. شکل ۱۱۵ ساختار میکروسکوپی این فولاد را قبل از شروع تغییر فرم نشان می‌دهد. همان طور که در تصویر فوق دیده می‌شود ساختار میکروسکوپی آن شامل دانه‌های محوری تنبیه‌دار مجزا با صفح اتصالی است. در اثر اعمال تغییر فرم در کرنگ ۱/۱۵۰ (شکل ۷۱۵) دانه‌ها کشیده شده و مرز دانه‌ها نیز دانه‌دانه گردیده‌اند. بعلاوه در بعضی قسمت‌ها، نشانه‌هایی از پراکمک آدر مزرها که دلیل بر شروع تیلوار مجدد دینامیکی است دیده می‌شود.

شکل ۱۱۵ ساختار میکروسکوپی این فولاد را در آرازی کرنگ ۱/۱۵۰ (شکل ۷) نشان می‌دهد. همان طور که در شکل ۷۱۵ دیده می‌شود کنشناکی دانه‌ها پیشتر شده و دانه‌های جدید حاصل از تیلوار مجدد دینامیکی در مزر دانه‌های اولیه مشکل‌آمیخت شده‌اند.

به طور کلی بیشتر تغییرات ساختاری فریت در دو فولاد A و C و در نشان دیده که تیلوار مجدد دینامیکی در فریت در سرعت‌های کرنگ کم شروع شده است ولی نشان دیده بسیار کمتر است. در اثر علت آن است فرد نخ تیلوار مجدد دینامیکی در فریت در فولاد A و C نشان دیده از رسوبات نیش‌دار است که از شروع و ادامه تیلوار مجدد جلوگیری می‌کند.

ج - پرسی رفتار فولادها در آزمایش‌های استاتیکی

منحنی‌های تشنه - کرنگ فولادهای سورد تحقیق از طریق آزمایش‌های فشار گرم دومرحله‌ای

1- Metadynamic Recrystallization 2- Bulging
شکل 8 – رابطه بین پارامتر زنر – دهلیز با تنش پیک. (a) نیوزک (b) نیوزک (c) نیوزک (d) نیوزک (e) نیوزک
شکل 9- ساختار میکروسکوپی فولاد A/ 200 قبل از تغییر فرم a/ بعد از تغییر فرم
شکل 11 - تغییرات ریزساختار فولاد B (C) ۰/۰۳ در سرعت کرنش ۱۰⁻⁶ × ۱ تفییر نورم یافته است. (8) تبلیغ از تفییر نورم (۰) در کرنش ۴/۰۰ در کرنش اوج
استلال

(استاندارد) به دست آمده. شکل 12 رفتار فولاد C را در دو ناحیه دماهای ویژه (C95°C) و
فریت (C95°C) و به ازای زمان‌های نگهداری مختلف نشان می‌دهد. همان‌گونه که در این شکل دیده
می‌شود، با نگهداری نمونه‌ها در بین دو مرحله فشان، نقطه تسهیم مشخص سیلان مرحله دوم کاهش
پیدا می‌کند و به تدریج با افزایش زمان نگهداری تنش تسهیم در مرحله دوم با مرحله اول همگرایی
می‌شود. کاهش نقطه تسهیم در ناحیه فشان مرحله دوم نشان‌گرفت دان پازیابی و تبلور مجدد در
ماده است که به تدریج با افزایش زمان پیشرفت گردد و در لحظه‌ای که تنش تسهیم مرحله دوم با
نمک رساندن مرحله اول برای می‌شود، تبلور مجدد در ماده کامل می‌شود.

هر متر که در شکل 12 دیده می‌شود در ناحیه اوسنتیت تبلور مجدد بعد از حدود 50 ثانیه
در این فولاد کامل شده است. در حالی که در ناحیه فریت (شکل 12) (علی رغم اینکه نگهداری کرنش
اولیه (پیش کرنش) بیشتر از مقدار آن در ناحیه اوسنتیت بوده، حتی با افزایش زمان‌های طولانی تیز
تبلور مجدد در آن کامل نشده است. به عبارت دیگر مقاومت ناحیه اوسنتیت داشته است.

که بدین نسبت به میزان پیش‌کرنش نشان ممکن دارد نشان‌گرفت دان پازیابی و تبلور مجدد استانداردی شده است.

از طرف دیگر بر سرعت تبلور مجدد استاندارد - شکل 13 اثر دما بر پیشرفت تبلور مجدد استاندارد
اوستنتیت و فریت را در فولاد D نشان می‌دهد. همان‌طور که در این شکل دیده می‌شود با افزایش
دما در مناطق اوسنتیت (C95°C و C95°C درجه سانتی‌گراد) و فریت (C95°C و 700 درجه سانتی‌گراد)
پیشرفت تبلور مجدد سریع‌تر شده است. همچنین در این شکل دیده می‌شود که نسبت نرم شدن
در محدوده دماهای فریت حتی به ازای زمان‌های طولانی تیز به یک تبریزی است؛ در
حالی که این نسبت در محدوده دماهای اوسنتیت در زمان‌های کوتاهتر به یک تبریزی است و در واقع
تبلور مجدد در آن کامل نشده است. به عبارت دیگر دماهای فریت و اوسنتیت نشان می‌دهد که نرخ
تبلور مجدد استاندارد در ناحیه اوسنتیت بیشتر از ناحیه فریت است.

از آنجا که مکانیزم‌های نرم شدن استاندارد در فریت و اوسنتیت پیکان بوده و از طریق تشکیل
مزوهای فرعی و جوان در رشد بر روی مزوهای اصلی و فرعی صورت می‌گیرد، لذا تفاوت
اصلي در نرخ تبلور مجدد استاندارد در این دو ناحیه میزان دارم، به طوری که با افزایش دما
مرحله پازیابی استاندارد که با حدف و نابودی تابجایی و تشکیل مزوهای فرعی همراه است سریع‌تر
شده و متعاقباً شروع تبلور مجدد تسویه می‌شود. بنابراین تأثیر دیگر که ارتباط با فولادهای

شکل 12 - منحنی‌های تنش–گریز فولاد C در مرحله فشار و به ازای زمان‌های نگهداری مختلف

در (a) درمانه از 950°C، در (b) درمانه از 700°C.

میکروآنالیز مورد نظر وجود دارد، نقش رسوبات استاتیکی کربنیت‌های TiCN در آن است. از آنجایی که کسر حجمی رسوباتی نظیر TiC و Ti(CN) یا TiC در فاز فریت شکل می‌شوند.
استطلاع

به جنگین يارا ناژوارتست‌ها رسید (۱۱ و ۱۲)، تیلور مجدد استانکی در نظریت پیشرفت به تأام می‌آمد. اثرات دو سرعت تیلور مجدد استانکی - شکل ۱۲ اثر انرژی کریستال نشان می‌داد. همان طور که در این شکل می‌شود با انرژی کریستال نشان می‌داد. تنها دو سرعت (۱۰/۰۵ و ۱۵/۰۸) در کلیه دماهای انرژی‌پذیری این است.

نتیجه‌گیری‌های بدست‌آمده در اثر تیلور مجدد استانکی - چهار روش درمان و کسر حجمی دانه‌های مجدد امکان‌پذیر بوده یا قابلیت تنها روش‌های انرژی کریستال قابلیت تمایل‌های مختلف در شکل ۱۵ نشان داده است. این نتایج در دماهای ۱۰۰و در دماهای ۱۵۰و با سرعت کریستال ۱۰/۰۵ و ۲۰/۰۵ بیشتر بهبود نشان داده است.

شکل ۱۵ نشان‌هایی به وجود می‌آید که در اثر تشکیل فوره قاعدگی و جریان‌های اولیه در سطح‌های شیشه‌ای به وجود می‌آید. مقدار ۱۵۰و برای گذشت.

شکل ۴۰ و ۱۵۱ نشان‌هایی به وجود می‌آید که در اثر تشکیل فوره قاعدگی و جریان‌های اولیه در سطح‌های شیشه‌ای به وجود می‌آید. مقدار ۱۵۰و برای گذشت.

شکل ۴۰ و ۱۵۱ نشان‌هایی به وجود می‌آید که در اثر تشکیل فوره قاعدگی و جریان‌های اولیه در سطح‌های شیشه‌ای به وجود می‌آید. مقدار ۱۵۰و برای گذشت.
شکل 12 - عوامل کننده بر روی زمان لازم جهت ۵۰ تیم‌های مجدد (۰.۵) در دمای‌های مختلف

شکل 13 - منحنی‌های نرم شدن لوله D/۱۱۵ C بر حسب زمان و در دمای‌های مختلف

Fractional Softening

Steel 0.115%C

Log l(0.5), Recrystallization

Carbon (Wt%)

0
10
100
1000
10000

1
10
100
1000
10000

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.1
شکل 15 - تغییرات ریزساختارولوژی C (700°C) دردماي 800 درجه سانتی‌گراد در سه نگهداری (a) بعد از 120 ثانیه نگهداری، (b) بعد از 300 ثانیه نگهداری، (c) بعد از 600 ثانیه نگهداری و (d) بعد از 1000 ثانیه نگهداری.
الف - از بررسی نتایج آزمایش‌های دینامیکی بر روی فولادهای مورد تحقیق مواد زیر استنتاج شد:

1- مکانیزم ترم شدن دینامیکی در تمام فولادهای مورد تحقیق در ناحیه اوسنیتت از نوع تبیور مجدد
دینامیکی و در ناحیه نریت در فولاد A عمدهاً از نوع تبیور مجدد دینامیکی و در فولادهای B و C عمدهاً از نوع تبیور مجدد دینامیکی است.

2- عامل اصلی در جلوگیری از تبیور مجدد دینامیکی در فرم وجود عناصر بین نشینی کری و نیتروژن است. که با تئشیه رسوایی ناشی از تغییر قروم مانعی در پرایر تبیور مجدد دینامیکی به وجود می‌آورد.

3- رفتار تبیور مجدد دینامیکی فولادهای مورد تحقیق در ناحیه دماهای اوسنیتت نشان می‌دهد که با انرژی دما و یا کاهش سرعت کرنش، کرنش اوج به جلو و یا کاهش دما و یا انرژی سرعت کرنش، کرنش اوج به عقب می‌افتد. به عبارتی بهتر تبیور مجدد دینامیکی اوسنیتت در مقدار بالای ز به تأخیر می‌افتد و یا بالعکس.

4- با افزایش کری در این فولادها در ناحیه اوسنیتت شروع تبیور مجدد دینامیکی به تأخیر می‌افتد.

ب - بررسی نتایج آزمایش‌های استاتیکی بر روی فولادهای مورد تحقیق نشان می‌دهد که:

1- بافزایش دمایی بازیابی و تبیور مواد استاتیکی در هر دو ناحیه نریت و اوسنیتت افزایش می‌یابد.

2- نرخ تبیور مجدد استاتیکی در ناحیه اوسنیتت بیشتر از ناحیه نریت است، که این به دلیل بیشتر بودن دما و همچنین کاهش کسر حجمی رسوبات در ناحیه اوسنیتت نسبت به ناحیه نریت است.

3- در هر دو ناحیه نریت و اوسنیتت با افزایش کری نرخ تبیور مجدد استاتیکی کاهش می‌یابد.
قدردانی

بدین رویه از دانشگاه صنعتی اصفهان و از شرایط هماهنگی تحقیقات و معاونت مجازی
پژوهشی دانشگاه صنعتی اصفهان برای تأمین هزینه های این پژوهش، صمیمانه تشکر می‌شود.

