استفاده از شبیه‌سازی ماتریس برای رنگ محدودیت در تعداد رنگ‌های به کار رفته در رنگ‌های کالریتم‌ی

سیدحسین امیرشاهی
دانشکده مهندسی نساجی، دانشگاه صنعتی اصفهان

چکیده - در این مقاله الگوریتمی برای رنگ محدودیت در تعداد رنگ‌های شرکت کننده در رنگ‌های کالریتم‌ی ارائه شده است. روش معرفی شده از الگوریتم پیشنهادی آن است که اساس آن بر محاسبه میانگین به‌کارگیری مکس و نیم است. این روش محدودیت استفاده از چهار رنگ در نظرگیری دو رنگ کوکیلا - مانکوک - را انجام می‌دهد. با استفاده از روش پیشنهادی که بر مبنای به کارگیری شبیه‌سازی ماتریس است، یکی از باعثات و مقصود بقیه رنگ‌های اولیه به کار رفته نیست. کاربرد روش پیشنهادی در یک رنگ همانندی کامپیوتری آزمایش شده است.

Using Pseudo-Inverse to Eliminate the Limitation of the Number of Colors in Colorimetric Match

S.H. Amirshahi
Department of Textile Engineering, Isfahan University of Technology

ABSTRACT- An algorithm is suggested for implementation of unlimited primaries in two-constants Kubelka-Munk color matching attempt. Allen's method for tristimulus color matching, which was limited to four colorants in two constant theory, dealt with irreversible matrices. By application of the pseudo-inverse, it is not necessary to limit the number of primary colors to four as Allen suggested. The suggested method is programed to a color matching attempt with five pre-colored fibres.
در مقاله حاضر، با استفاده از شبه مکوس ماتریسی، روش پرای جهت محاسبه مقدار اختلال رنگ، جلوگیری از رفتاری که درنگ همانندی کاریمتری محدود به تعداد پیشنهادی در روش آلن نیست، پیشنهاد شده است. به عبارتی، با استفاده از روش پیشنهادی محدود، در تعداد اولیه فهرست حالت و کار رفتار در رنگ همانندی ناگهانی شده است. این روش برای نظریه توان رنگ همانندی کامپیوتری به صورت عملی آزمایش شده که نتایج حاصل در این مقاله طراحی نشده است. در این روش نظریه توان ثابت گیلک ات - ماتریس مربع پژوهشی این روش به صورت کار رفتار است. این روش نظریه موجود در رنگ همانندی کاریمتری بر اساس پیشنهاد آلن، شرایط برای رنگ همانندی کاریمتری را به صورت زیر می توان نشان داد:

\[
T\cdot E\cdot R_t = T\cdot E\cdot R_{samp}
\]

(1)

به گونه که تابع رنگ همانندی یک تابع نسبی منبع \(E\times R\times samp\) است. اگر امکان زیست ویژگی‌هایی به صورت زیر می‌توان نشان داد:

\[
X_t = F_t(c_t, e_t, \ldots, e_N)
\]

(2)

\[
Y_t = F_t(c_t, e_t, \ldots, e_N)
\]

\[
Z_t = F_t(c_t, e_t, \ldots, e_N)
\]

که فاصله بین مقدار محرکهای سه گانه و خلت های رنگ‌هایی با کار رفتار را به صورت زیر می‌توان نشان داد:

\[
\Delta X, \Delta Y, \Delta Z = (\Delta x, \Delta y, \Delta z)
\]

(3)

که اختلاف بین مقدار محرکهای سه گانه و خلت های رنگ‌هایی با کار رفتار را به صورت زیر می‌توان نشان داد:

\[
F_1, F_2, F_3, F_4, F_5, F_6
\]

(4)

که در نظریه پیشنهاد کیویکا - ماتریس شده به رنگ بیان به صورت زیر می‌توان جوانید:

\[\text{تایب غیر خطی} 3 \text{ خلت رنگ‌هایی به کار رفتاد.}

\text{رشب کیویکا - ماتریس شده به رنگ بیان به صورت زیر می‌توان جوانید:}

\[
\text{تایب غیر خطی} 3 \text{ خلت رنگ‌هایی به کار رفتاد.}
\]

\text{رشب کیویکا - ماتریس شده به رنگ بیان به صورت زیر می‌توان جوانید:}

\[
\text{تایب غیر خطی} 3 \text{ خلت رنگ‌هایی به کار رفتاد.}
\]

\[
\text{رشب کیویکا - ماتریس شده به رنگ بیان به صورت زیر می‌توان جوانید:}

\[
\text{تایب غیر خطی} 3 \text{ خلت رنگ‌هایی به کار رفتاد.}
\]

\[
\text{رشب کیویکا - ماتریس شده به رنگ بیان به صورت زیر می‌توان جوانید:}

\[
\text{تایب غیر خطی} 3 \text{ خلت رنگ‌هایی به کار رفتاد.}
\]

\[
\text{رشب کیویکا - ماتریس شده به رنگ بیان به صورت زیر می‌توان جوانید:}

\[
\text{تایب غیر خطی} 3 \text{ خلت رنگ‌هایی به کار رفتاد.}
\]

\[
\text{رشب کیویکا - ماتریس شده به رنگ بیان به صورت زیر می‌توان جوانید:}

\[
\text{تایب غیر خطی} 3 \text{ خلت رنگ‌هایی به کار رفتاد.}
\]

\[
\text{رشب کیویکا - ماتریس شده به رنگ بیان به صورت زیر می‌توان جوانید:}

\[
\text{تایب غیر خطی} 3 \text{ خلت رنگ‌هایی به کار رفتاد.}
\]

\[
\text{رشب کیویکا - ماتریس شده به رنگ بیان به صورت زیر می‌توان جوانید:}

\[
\text{تایب غیر خطی} 3 \text{ خلت رنگ‌هایی به کار رفتاد.}
\]
رضایی جلد 16 و انتشار 17 کیوبلاکا - مانک پرای رنگ‌های مربوط‌اند.

\[
\Phi_k = \begin{bmatrix} S_{1,1} & S_{1,2} & \ldots & S_{1,r} \\ \vdots & \vdots & \ddots & \vdots \\ S_{1,s} & S_{2,1} & \ldots & S_{r,1} \\ \vdots & \vdots & \ddots & \vdots \\ S_{r,s} & \vdots & \ddots & S_{r,r} \end{bmatrix}_{15 \times 15}
\]

و گلظت این رنگ‌های را نشان می‌دهد. معمولاً با خلفی 17 کردن
معادله‌های فوق، گلظت رنگ‌های به کار رفته را می‌توان محاسبه نمود. ولی پیدا کردن که چنین عملی منجر به کاهش دقت نتایج حاصل خواهد شد [4]. از این رو لازم است که دقت گلظتهای محاسبه‌شده با استفاده از فرمیک تکرار 15 انواشی داد.

چون روش پیشنهادی آلی بر وسایل استفاده از چهار رنگ در نظر گرفته می‌باشد، استفاده می‌شود ماده‌ای که در حل‌های تکرار براساس کار وی ظاهر می‌شود ماده‌ای تیره‌تر چهره‌های

\[
A_{(3 \times 2)}^T \Delta c_{(2 \times 1)} = \Delta t_{(2 \times 1)}
\]

به گونه‌ای که با چنین محدودیتی، یک ساتریس مربی 3×3
است که از معادله زیر به دست می‌آید:

\[
A = T \cdot E \Phi_k (\Phi_k - K_y u) + D_y (\Phi_y - S_y u)]
\]

به گونه‌ای که اجزای معادله باalahک به گونه‌ای که مربی ساتریس ممکن است ناهاشم‌گونه باشد، عبارت از:

\[
T = \begin{bmatrix} R_{1,1} & R_{1,2} & \ldots & R_{1,1} \\ \vdots & \vdots & \ddots & \vdots \\ R_{s,1} & R_{s,2} & \ldots & R_{s,1} \end{bmatrix}_{3 \times 15}
\]

\[
E = \begin{bmatrix} E_{1,1} & E_{1,2} & \ldots & E_{1,1} \\ \vdots & \vdots & \ddots & \vdots \\ E_{s,1} & E_{s,2} & \ldots & E_{s,1} \end{bmatrix}_{15 \times 15}
\]

\[
\Phi_k = \begin{bmatrix} K_{1,1} & K_{1,2} & \ldots & K_{1,r} \\ K_{2,1} & K_{2,2} & \ldots & K_{2,r} \\ \vdots & \vdots & \ddots & \vdots \\ K_{r,1} & K_{r,2} & \ldots & K_{r,r} \end{bmatrix}_{15 \times 15}
\]

همان گونه که گفتگو شده، تابع رنگ‌های معادن‌های (X) است و
توزیع آن‌ها یا نسبی منحنی را نشان می‌دهد.

\[
R_y(t) = \text{انمکسه‌های به نشان می‌دهد}
\]

استقلال سال 14، شماره 2، اسفند 1374
در رنگ همانندی کالریتری روش آن بر محاسبه کرب ماتریس‌های مکروسپرمی با شده است. از این رو ضروری است که تعداد رنگ‌ها در نظر گرفته شود. هر دو رنگ به چهار محدود شود. توجه ریاضی مشکل ایجاد شده این است که در صورت رعایت نکردن محدودیت فوق، به دلیل اینکه ماتریس A ماتریس ویژه(1) می‌شود، مکروسپرمی آن می‌شود نیست. به باین دیگر، ماتریس A در معادله (2) می‌گوید، به دلیل مناسبی، که رنگ‌های نورد را همیشه می‌کند. ضریب‌های فضایی S و K به شکل زیر نشان می‌دهند.

\[c = A^+ . t \]

(19)

در حالت اول که ساده ترین حالت برای حل این معادله است محقق (19) استفاده شده و تنا جواب معادله \[c = A^+ . t \] را به صورت زیر می‌توان به دست آورد:

\[\begin{bmatrix} S_{1,1} & \cdots & S_{1,n} \\ \vdots & \ddots & \vdots \\ S_{n,1} & \cdots & S_{n,n} \end{bmatrix} = \begin{bmatrix} A_{1,1}^+ & \cdots & A_{1,n}^+ \\ \vdots & \ddots & \vdots \\ A_{n,1}^+ & \cdots & A_{n,n}^+ \end{bmatrix} \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix} \]

(20)

در این معادله N شماره رنگ‌های کاندیدا برای رنگ‌های مانندی است و معادله (6) به صورت کلی زیر در نیست:

\[A = T . E [D_K (\Phi_K - K_N). u + D_S (\Phi_S - S_N). u] \]

(21)

در معادله (21) ماتریس‌های \(D_K \) و \(D_S \) به ترتیب همان ماتریس‌های زبان (7)\((A,\lambda) \) و (12)\((\Lambda) \) هستند و به یکپارچه‌سازی به سری‌های جذب و انتشار کیولکا - مانک برای رنگ چهار‌تایی استفاده شده است.
چون اصول تمامی برناهای رنگ همانندی بر مبنای استفاده از ماتریس‌هاست، در این مقاله از "ماتریس" به عنوان نرم‌افزار برای انجام عملیات ماتریسی استفاده شده است. روش پیشنهادی برای رنگ‌های همانندی‌الافاقی از رنگ‌های شده که از نظریه دو ثابت، کپی‌های جدیدی نیز می‌کند. [۶ و ۷] آزمایش شده است.

ولی همچنین کار رنگ‌های الافاقی یکی از رنگ‌های سفید (خوردنگ) زرد، فرمزد آبی و مشکی بودند. مشخصات اندازه‌گیری این اولیها در جدول شماره (۱) نشان داده شده است.

برای بررسی تعداد رنگ‌های اولیه به کار رفته در رنگ‌های همانندی،

چهار گروه مختلف شامل تعداد مشابهی از این اولیها با صورت

الا زیر در نظر گرفته شدند:

گروه اول: زرد، زرد و آبی (س و رنگ)

گروه دوم: رنگ‌های رنگ اول به ملاک سفید (چهار رنگ)

گروه سوم: رنگ‌های رنگ اول به ملاک مشکی (چهار رنگ)

گروه چهارم: رنگ‌های رنگ‌های اول به ملاک سفید مشکی (چهار رنگ)

جدول ۱ - جدول اندازه‌گیری الافاقی رنگ‌های اولیه که به عنوان اولیه

<table>
<thead>
<tr>
<th>ابعاد الافاقی</th>
<th>طول موج (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبی</td>
<td>۴۴۰</td>
</tr>
<tr>
<td>مشکی</td>
<td>۴۱۰</td>
</tr>
<tr>
<td>زرد</td>
<td>۴۳۰</td>
</tr>
<tr>
<td>سفید</td>
<td>۴۲۰</td>
</tr>
</tbody>
</table>

در چنین حالتی، معادله زیر با توجه به معادله (۲۶) در تعیین تعداد

به دست آمده که در حلقه‌های تکرار ظاهر می‌شود.

\[
\Delta C = A_{(N \times 1)}^T \cdot A_{(1 \times N)}^T \cdot \Delta T_{(2 \times 1)}^T \cdot \Delta T_{(2 \times 1)}
\]

معادله (۲۷) که بر مبنای استفاده از شبیه‌سازی ماتریس‌هاست

به‌دن هر نوع محدودیت در تعداد رنگ‌هایی که کار رفته در رنگ

همانندی کاربردی می‌تواند استفاده شود.
جدول ۲ - مشخصات پنج نمونه رنگ در سیستم CIELAB که به HNAME انتخاب شدند

<table>
<thead>
<tr>
<th>شماره فند</th>
<th>a*</th>
<th>L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۱/۶۲</td>
<td>۵/۷۸</td>
</tr>
<tr>
<td>۲</td>
<td>۱/۹۸</td>
<td>۴/۲۰</td>
</tr>
<tr>
<td>۳</td>
<td>۲/۶۷</td>
<td>۳/۷۸</td>
</tr>
<tr>
<td>۴</td>
<td>۲/۸۰</td>
<td>۷/۹۸</td>
</tr>
<tr>
<td>۵</td>
<td>۴/۲۷</td>
<td>۱/۷۸</td>
</tr>
</tbody>
</table>

اختلاف رنگ بایر صفر استاندارد نریه (D۰) با علت هدف ابن رنگ همانندی کالیبرهای انتخاب شد (= ۵). نمونه ای که به علت اهداف رنگ همانندی انتخاب شدند با اختلاف تصادفی الاف از قبیل رنگ شده ای که به علت اولیه بکار رفته‌اند نه شدند. مشخصات کالیبرهای ابن پنج نمونه زیر استاندارد نوری (CIE) ۱۹۳۱ و مشواکه‌کننده استاندارد ۱۹۳۱ همانندی با گروه‌های مختلفی از اولیه‌ها را نشان می‌دهند. همان گونه که گروه‌های (۳) نشان می‌دهند، به کار بردن رنگ یک‌جمله باعث کاهش مقدار انتقال نرم و تغییر مقدار هدف پیشنهادی تغییرشده و نمونه‌های هدف شده و به بیان ساده‌تر افزایش تعداد رنگ‌های اولیه منجر به همانندی بهتری شده است. به حال دیده‌است با اولیه‌های انتخابی که از رنگ‌های کالیبرهای با اختلاف الاف بروخوردارند امکان منتفی شدن مقدار یک با اولیه منفی برخوردارید که این امر به مفهوم عدم نیاز به حفظ تصادفی الاف رنگ و رنگ‌هایی در رنگ همانندی نمونه مورد نظر است. منتظر...
جدول ۴ - مقدار اختلاف رنگ‌های یکنمونمسوئزدکر (هفت) و نمونه‌های تخمین زده شده

<table>
<thead>
<tr>
<th>ΔE</th>
<th>شماره گروه</th>
<th>شماره</th>
<th>ترمز</th>
<th>آبی</th>
<th>سفید</th>
<th>مشکی</th>
<th>وزن یافته (بر اساس گروه‌پیشنهادی)</th>
<th>ترمیم</th>
<th>زرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D۰۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۲۷</td>
<td></td>
<td>۰</td>
<td></td>
<td>۱۵/۱۰</td>
<td></td>
<td></td>
<td>۱۲/۵۶</td>
<td></td>
<td>۶۰/۸۲</td>
</tr>
<tr>
<td>۰/۶۲</td>
<td></td>
<td>۰</td>
<td></td>
<td>۱۱/۰۳</td>
<td></td>
<td></td>
<td>۸/۰۹</td>
<td></td>
<td>۶۶/۲۶</td>
</tr>
</tbody>
</table>

جدول ۵ - مقدار اختلاف رنگ‌های یکنمونتقوی‌تیره (هفت) و نمونه‌های تخمین زده شده

<table>
<thead>
<tr>
<th>ΔE</th>
<th>شماره گروه</th>
<th>شماره</th>
<th>ترمز</th>
<th>آبی</th>
<th>سفید</th>
<th>مشکی</th>
<th>وزن یافته (بر اساس گروه‌پیشنهادی)</th>
<th>ترمیم</th>
<th>زرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D۰۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۰۶</td>
<td></td>
<td>۰</td>
<td></td>
<td>۲۴/۸</td>
<td></td>
<td></td>
<td>۱۱/۱۸</td>
<td></td>
<td>۲۳/۶۸</td>
</tr>
<tr>
<td>۱/۵۶</td>
<td></td>
<td>۰</td>
<td></td>
<td>۲۴/۸</td>
<td></td>
<td></td>
<td>۲۲/۳۲</td>
<td></td>
<td>۴۴/۸</td>
</tr>
<tr>
<td>۰/۶۲</td>
<td></td>
<td>۰</td>
<td></td>
<td>۱۷/۳۴</td>
<td></td>
<td></td>
<td>۲۶/۸۲</td>
<td></td>
<td>۴۰/۷۱</td>
</tr>
</tbody>
</table>

جدول ۶ - مقدار اختلاف رنگ‌های یکنمونتقوی‌تیره (هفت) و نمونه‌های تخمین زده شده

<table>
<thead>
<tr>
<th>ΔE</th>
<th>شماره گروه</th>
<th>شماره</th>
<th>ترمز</th>
<th>آبی</th>
<th>سفید</th>
<th>مشکی</th>
<th>وزن یافته (بر اساس گروه‌پیشنهادی)</th>
<th>ترمیم</th>
<th>زرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D۰۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰/۰۴</td>
<td></td>
<td>۰</td>
<td></td>
<td>۱۷/۵</td>
<td></td>
<td></td>
<td>۱۱/۱۸</td>
<td></td>
<td>۴۷/۳۲</td>
</tr>
<tr>
<td>۰/۵۶</td>
<td></td>
<td>۰</td>
<td></td>
<td>۲۲/۴</td>
<td></td>
<td></td>
<td>۳۳/۶۲</td>
<td></td>
<td>۶۵/۱۸</td>
</tr>
</tbody>
</table>

جدول ۷ - مقدار اختلاف رنگ‌های یکنمونتقوی‌تیره (هفت) و نمونه‌های تخمین زده شده

<table>
<thead>
<tr>
<th>ΔE</th>
<th>شماره گروه</th>
<th>شماره</th>
<th>ترمز</th>
<th>آبی</th>
<th>سفید</th>
<th>مشکی</th>
<th>وزن یافته (بر اساس گروه‌پیشنهادی)</th>
<th>ترمیم</th>
<th>زرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>D۰۵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲/۰۴</td>
<td></td>
<td>۰</td>
<td></td>
<td>۱۰/۰۳</td>
<td></td>
<td></td>
<td>۵۸/۰۷</td>
<td></td>
<td>۴۰/۶۲</td>
</tr>
<tr>
<td>۲/۲۴</td>
<td></td>
<td>۰</td>
<td></td>
<td>۲۰/۱۵</td>
<td></td>
<td></td>
<td>۲۲/۱۷</td>
<td></td>
<td>۷۵/۷۱</td>
</tr>
<tr>
<td>۱/۵۲</td>
<td></td>
<td>۰</td>
<td></td>
<td>۲۰/۱۵</td>
<td></td>
<td></td>
<td>۲۰/۱۷</td>
<td></td>
<td>۷۵/۷۱</td>
</tr>
</tbody>
</table>

استاندارد سال ۱۴: شماره ۱۴، اسفند ۱۳۷۴
1. colorimetric color matching
2. Allen
3. inverse matrix
4. two constant Kubelka-Munk theory
5. matrix pseudo-inverse
6. spectrophotometric color matching
7. tristimulus values
8. metamerism
9. color matching function
10. relative spectral power of the light
11. spectral reflectance
12. target
13. nonlinear function of colorant concentrations
14. linearisation
15. iteration
16. Kubelka-Munk absorption coefficient
17. Kubelka-Munk scattering coefficient
18. Gaussian elimination
19. fit
20. least-squares technique
21. singular
22. MatLab
23. standard illuminant
24. standard observer
25. degree of freedom