شبیه‌سازی کامپیوتری از ترانسформاتورهای جریان تحت بارگذاریهای مختلف با استفاده از یک مدل بهینه برای منحنی مغناطیسی

چکیده - این مقاله به ارائه روشی مربوط به شکل کمک آن تنها رفتار ترانسформاتورهای جریان ۱ را به طور دقیق پیش بینی کرد. در این روش، برای شبیه‌سازی کامپیوتری از ترانسформاتورهای جریان، مدل جدیدی معرفی می‌شود که از دو تغییرات، تغییری محاسباتی و حجم حفاظت کامپیوتری بهینه است. از نرخ افزایش مصرف شده در این مقاله می‌توان به جای ترانسформاتورهای جریان واقعی در ترکیب با دستگاه‌های آزمونوله برای آزمایش انواع مختلف رله های حفاظتی استفاده کرد.

Computer Simulation of Current Transformers Using a New Steel-Iron Core Magnetization Model

J. Soltani and AK. Gozine
Deparment of Electrical and Computer Engineering, Isfahan University of Technology.

ABSTRACT- This paper is concerned with development of a technique for performance prediction of current transformers (CT), accurately. In this technique, a new optimized model from view-point of both computation time and memory is introduced in order to simulate the current transformers on digital computers. The introduced software in this paper in combination with relay tester equipments can be used instead of the actual CT to test different types of protection relays.

مقدمة

رفتار ترانسформاتورهای جریان در حالتهای گذرا به‌ویژه انواع حفاظتی آنها مهم و ضروری است. در صورتی که یک مدل کامپیوتری مناسب از آنها پیشنهاد شود، به کمک این مدل امکان

* استفاده

** نوار پیش‌آماده کارشناسی ارشد

استقبال: سال ۱۵، شماره ۲، اسفند ۱۳۷۵
مقدمه

در این مقاله، شیب و نحوه جریان در کانال های هالتی بای و باعث تغییر در شیب ها بیان شده است. این تغییرات به دلیل اثرات ops و w به طور مستقیم بر جریان کانال تأثیر می‌گذارد. در واقع، این تغییرات در شیب ها باعث شده است که جریان کانال از طریق این دو پارامتر افزایش یابد. در ادامه، این تغییرات در محیط آبیاری استفاده می‌شود و به‌طور کامل بررسی می‌شوند.

لیست نشانده در سال آنالیز

در این سال آنالیز، لیست زیر به‌طور کامل بررسی شده است:

- A1
- w
- Vrms
- Re
- PE
- F
- w(0), t(0)

در این سال آنالیز، لیست زیر به‌طور کامل بررسی شده است:

- P
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیз به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)

از جمله فرمول‌ها و معادله‌هایی که در این سال آنالیز به‌طور کامل بررسی شده است:

- F
- w(0), t(0)
يعتبر ناحیه اشباع منحنی مشاهده متقابلی را مدل‌سازی می‌کند. ضرایب این مدل دو قسمتی مانند مدل‌های پیشین با استفاده از نقاط اندازه‌گیری شده و کاربرد روش حداکثر میزان بحران خطا به‌دست می‌آیند. کارآیی آن برای چند نمونه مختلف هسته آرامایش شده و تناوب به‌دست‌آمده اندازه‌گیری با مبنای مولفه نشان می‌دهد. این منحنی همچنین با کارگری مدلهای پیشنهادی در مراجع [1] و [6] نیز به‌دست‌آمده و سپس هم‌سازی آنها یکجا به‌نام اصلی کامپیوتر و به‌نام زیر برنامه مولفه، مدل‌سازی کامپیوتری از ترانسفورمرهای جریان با استفاده از مدل پیشنهادی در این مقاله برای این نوع بارگذاری‌های مختلف (مقاومتی، سلفی و خاکی) در نمودارهای انجام گرفته‌است. لازم به ذکر است که برای درک قاد قاره‌های این تابع رابطه شده‌است که کارگری سایر مدل‌های قبلی نیز در اختیار گذاشته شده‌است. به‌علاوه، این مدل‌سازی همچنین با نیز به‌نگرفتن تلفات هم‌سازی شده است. فاکتور به‌صورت یک مقدار ثابت مدل مدول خود حلقه‌سازی‌های نیز انجام‌گونه است. مدل‌ها نهایتاً که هر فاکتور با هر نوع بارگذاری به‌وزن مدل بهینه‌شده نیز (فاز اولین پارامترهای مدل) هم‌سازی مقدار به‌وزن اولین پارامتر که توسط این مقاله ارائه می‌شود.

نتیجه مقاله

1-2-1 مدل تقریبی ریاضی جریان اولیه ترانسفورمرهای جریان

هگامی که درک شکل ناحیه اشباع منحنی ما مدل‌سازی شده‌است، قطعات جریان و ترانسفورمرهای خود به‌صورت دو دایره مدل تک خطی این شکل را می‌توان به‌صورت شکل (1) نشان داد. با استفاده از قرارگاه که در این مدل مایل و بالا در واقع همان واقعیت‌های الکتریکی یک‌باره‌ای تحقیق پیدا کرده‌اند ماشین‌های سکویی در میانه‌های سكترون هستند. در فاکتور به‌وزن یک کلیت ناحیه یک مدل گذاری مدل قرار گرفته‌است. در این مدل جریان عبری از کلید یکی از مدل‌ها و بحران خطا به‌صورت مبنای مولفه نشان می‌دهد. این کلید زمان باشد.

\[I_1(t) = I_{1r} \sin(\omega t) \]
در این معادله H_{kc} شدت میدان محاسبه شده بنا به این امین K مقدار محاسبه شده چگالی شار B_k است. برای اعمال روش حداقل مربوطات خطاهای محورهای ضرایب C_i در معادله (7) با پایستی تابع زیر راکمک کنید:

$$\Phi = \sum_{k=1}^{N} \left(\sum_{i=1}^{N} C_i B_k \right)$$

توجه: این شدت میدان مغناطیسی اندیشه‌گیری شده است. این معادله از این دسته معادلات عبارت است از:

$$\frac{\partial \Phi}{\partial C_i} = \gamma \sum_{j \neq i} \left(-H_{km} + \sum_{i=1}^{N} C_i B_k \right) = 0$$

و با

$$\sum_{i=1}^{N} \left(C_i B_k \right) = \sum_{i=1}^{N} H_{km} B_k$$

که می‌توان به‌بسیاری دسته معادلات را به شکل ماتریسی زیر تبدیل کرد:

$$[B_{k}][C] = [B_{k}][H_{km}]$$

در این معادله N بردارهای $C(N \times N)$ و B و H_{km} مولفه‌ای هستند. با استفاده از معادله ماتریسی دیگری $C_{m} B_{k}$، به‌طور زیر محاسبه می‌شوند:

$$[C] = [B_{k}]^{-1} [B_{k}][H_{km}]$$

به‌دست آمده است که درصد دقت ضرایب محاسبه شده C_{m} به عدد K معادلات نقاط انتقال‌گیری شده و درجه چند جملجای C معادلات N درد.

برای روش به‌طور مشابه برای مدلهای دو جملهای معادلات (5-الف) و (5-ب) و (6-الف) و (6-ب) و (7) مدلی از معادلات $C_{m} B_{k}$ به‌دست می‌آید:

$$H = C_{m} B^m$$

در معادلات بالا، N هر عدد باید صحیح دلخواه مثبت و m عدد دلخواه حتی غیر صحیح هم می‌تواند باشد.

علاوه بر m مدل دو قسمتی مذکور در معادلات (6-الف) و (6-ب)، C_{m} از این نظر نیز مورد مطالعه قرار گرفته است که اختلاف جزئی این دو مدل فقط در قسمت دوم آنها به‌رای تغییر بالاتر از 20% نقطه نازایی این است. در معادله (6-ب) عبارت $C_{m} B$ نیز به آن اضافه می‌شود.

در تمام مدل‌های نرم‌های نرم (نما و پا و چندنقطه‌ای) یک قسمتی و یا دو قسمتی پیشنهاد می‌شود در این مقاله، برای تعیین ضریب از اطلاعات مرتبه به‌کار گرفته انتقال‌گیری شده و روش حداقل مربوطات خطای استفاده می‌کنیم. در کنندا مشخصه هسته با زیر داده شده باشد:

$$H_{kc} = \sum_{i=1}^{N} C_i B_k$$

استقلام، سال 15، شماره 2، اسفند 1375

47
پیامدهای مدل انتحابی برای متغیرهای مغناطیسی هسته، به‌سانگی می‌تواند باعث یک اسکرین شدن در محصولات مورد استفاده قرار گیرد. توصیه‌های گذشته این مدل به همراه نتایج این مطالعه به‌طور کلی به‌بکارگیری مدل‌های نسبتاً جدید و با توجه به مقادیر m و N درجه‌هایی از پیش‌بینی شده است. این نتایج به‌ویژه در مدل‌های تکمیل‌یافته (هر دو دوگانه مکانیکی خودرویی و خطوط توانایی محاسبه می‌شوند که هر دو به‌وسیله مهم اسلام‌کاری که دارد ارائه می‌آید.

در این مدل از تأثیر تغییرات لایه‌های تکمیل‌یافته بهره برده شده است. این مدل به‌وسیله آیا می‌تواند به‌ویژه در مدل‌های تکمیل‌یافته (هر دو دوگانه مکانیکی خودرویی و خطوط توانایی محاسبه می‌شوند که هر دو به‌وسیله مهم اسلام‌کاری که دارد ارائه می‌آید.

CT

1-مدل الکتریکی CT

CT با استفاده از مدلهای تکمیل‌یافته مانند ترانسفرمومترهای معمولی تکمیل‌یافته، مدل الکتریکی را می‌توان با صورت شکل (۳) نمایش داد. در این شکل (۳) برای اولین بار CT و بعنوان ورودی CT است و بر اساس مدلهای تکمیل‌یافته، جبران مغناطیسی کننده‌هیسته در تابعی از شار به‌صورت زیر است:

\[i_m = f(\Phi) \]

در این مدل نیز از ثقلات هسته‌های صرف‌نظر شده و هسته‌های برای رابطه تکمیلی (۱۲) به‌صورت یک اسکرین غیرخطی مدل‌سازی شده است. امکانات بار \(Z_b \) مطلق در بار سلفی \(L_m \) و مقادیر به‌صورت \(Z_b = R_b + jL_b \) مشتق شده است. به‌وسیله می‌توان از شکل (۳) مقادیر زیر را استخراج کرد:

\[\text{دستگاه‌های می‌توانند استفاده از مدل‌های تکمیل‌یافته مانند ترانسفرمومترهای معمولی تکمیل‌یافته، مدل الکتریکی را می‌توان با صورت شکل (۳) نمایش داد. در این شکل (۳) برای اولین بار CT و بعنوان ورودی CT است و بر اساس مدلهای تکمیل‌یافته، جبران مغناطیسی کننده‌هیسته در تابعی از شار به‌صورت زیر است:} \]

\[i_m = f(\Phi) \]

\[\text{در این مدل نیز از ثقلات هسته‌های صرف‌نظر شده و هسته‌های برای رابطه تکمیلی (۱۲) به‌صورت یک اسکرین غیرخطی مدل‌سازی شده است. امکانات بار \(Z_b \) مطلق در بار سلفی \(L_m \) و مقادیر به‌صورت \(Z_b = R_b + jL_b \) مشتق شده است. به‌وسیله می‌توان از شکل (۳) مقادیر زیر را استخراج کرد:} \]
خطی بر حسب \(\Phi \) شکل داده شده به پایه در هر تکرار بر حسب انتخاب فاصله زمانی مناسب برای \(\Delta t \) هش راه حل با این ترتیب است که در شرایط محاسباتی با در تکرار اول با علم روند شیارای مزیتی یعنی (\(\Phi_0 \)) و \(\Phi \) به کمک معادله (15-الف) مقدار \(\frac{d\Phi}{dt} \) و سپس از معادله (15-ب) مقدار \(\frac{d\Phi}{dt} \) به‌دست آید. آن گاه به کمک معادله دیفرانسیل غیرخطی مذکور در (1) حساب و به همین ترتیب در تکرارهای بعدی عمل کرده.

\[n \frac{d\Phi}{dt} = \frac{1}{C_h} (i_1 - i_m) + R \frac{d}{dt} (i_1 - i_m) + L_r \frac{d^2}{dt^2} (i_1 - i_m) \]

(14)

اً طبق معادله (3) فرض می‌شود.

برای هر مدل مشروط در پخش (2)، معادله (14) تبدیل به یک معادله دیفرانسیل غیرخطی بر \(\Phi \) بر حسب 2 مربوط به آن مدل انتخاب خواهد شد. این معادله انتگرالپذیر از معادلات نظیر به‌دست آمده در پارهای سطحی خواهد بود که با استفاده از روش تحلیل متغیره و با توجه به شرایط مزیتی یعنی (\(\Phi_0 \)) نیز (\(\Phi \)) که در واقع همان ویژوال‌اولی بر دس خاک یعنی \(C_h \) است، براساس دو معادله زیر حل کرده است.

\[\frac{d\Phi}{dt} = \frac{\Phi(m+1) - \Phi(m)}{\Delta t} \]

(15-الف)

\[\frac{d\Phi}{dt} = \frac{\Phi(m+1) - \Phi(m) + \Phi(m-1)}{(\Delta t)^2} \]

(15-ب)

از دو معادله بالا برای هر سطح انتخابی، معادله دیفرانسیل غیرخطی بر حسب زمان (\(\Phi \)) تبدیل به یک معادله دیفرانسیل

\[\text{نکات،} \quad \text{صمای ورده و } \text{مقاومت} \]

\[\text{فراکس، پرکشک و شکل} \]
مخصوص به صفحه است.

اساساً بین تاریخ به دست آمده از فورمول (16-ب) ر آنچه که در عمل رخ دیده تفاوت قبل توجهی و وجود دارد لذا تفاوت بین مقادیری که از فرمول به دست آمده به دنبال ادعا گذاری گردید، بر ماه محدود فاصله قرار گرفت است. توجهی که در این زمینه ارائه شده، می‌تواند در مقایسه یا مقایسه فرکانسی یا غیره به صورت خواندنی یکی می‌باشد. به‌طوری که

\[\eta = \frac{P_{em}}{P_{eg}} \]

(16-د) \[\text{(نقطه فرکانسی انتقالگر شده)} \]

با مراجعه به (13)، ملاحظه می‌شود که نسبت توان تلفات قطب‌های پسماند به فرکانسی ثابت‌بوده در حالی که این نسبت برای کل توان تلفاتی هسته‌ای است. از این نتیجه نتیجه‌گیری شده و باعث می‌شود که برای مثال (16-ب) محاسبه می‌شود با آماده‌سازی فرکانسی انتقالگر می‌باشد. در مرجع

\[v(t) = nA \frac{dB}{dt} \] \[R_e = \frac{V_{rms}}{P_{cm}} \] \[V_{rms} = \frac{1}{\sqrt{2}} nA f A B_{max} \] \[\eta = \frac{\text{نقطه فرکانسی انتقالگر شده}}{\text{نقطه فرکانسی محاسبه شده}} \]
\[R_e = \frac{(4/3\pi f n AB_{max})^2}{P_{em}} \]

\[\text{P}_{em} = \eta \text{P}_{ec} \]

بعضی از مشخصات ترانسفورماتور جریانی که در این مقاله مورد استفاده قرار گرفته است به قرار زیر است.

\[n = 0, \quad P_{max} = 200 \text{cm}^3, \quad \eta = 0.75 \]
\[H = 14/20 \text{cm}, \quad W = 90/70 \text{cm}, \quad M = 32/10 \text{kg} \]

براساس معادلات (16-ب) و (17-ب) مقدار CT به‌عنوان مدل الکتریکی تلفات واقعی فیکو برای این Re به‌صورت زیر محاسبه می‌شود:

\[\text{P}_{ec} = \left(\frac{\pi f B_{max}^2}{\rho d}\right) m = 1/2162 \]

\[\text{وات} = 2/042 \times 10^{14} \]

\[W = 3/5 \times 10^{14} \]

\[R_e = \frac{(4/3\pi f n AB_{max})^2}{P_{em}} = 10^{12} \Omega = 10^{12} \text{k} \]

1-4- مدل حلقه پسماند مغناطیسی هسته

مدل اصلی غیرخطی پیشنشاده آقای اوکلی نیز توسط دو مدل دیگر مربوط به مسیر مصرفی منحنی و تغییرات در شکل بکار گرفته شده است.

\[H = H_k(B) + W - \gamma W \exp \left[-\frac{B-B_k}{T} \right] \]

\[H = H_k(B) - W + \gamma W \exp \left[-\frac{B-B_k}{T} \right] \]

تابع تابع \(H_k(B) \) بر حسب \(B \) در معادله (7) داده شده است.

\[H = \sum_{k=1}^{N} C_k B_k \quad N=1, 2, 3, 5, \ldots \]

4-3- مدل پیشنشادی توسط محققات مقاله حاضر در این قسمت به هدف راه اندازی یک مدل استفاده می‌گردد.

حتی اگر خوب کامپیوتری واقعی محاسباتی و حجم ذخیره کم و نیز انتقال نسبتاً عالی را دارد باشد، بروند این جای خاص است که به یک مسیر در این مقاله داده می‌گردد، این مقاله در این مقاله داده می‌گردد.

استفاده از آن به‌جای CT است که بتوان از آن به‌جای CT استفاده کنیم. این مقاله در این مقاله داده می‌گردد.

روی خط و خارج خط همراه دستگاه آزمون ره ره در نوع اندازه‌گیری آن برای تعمیم پاسخ فرکانسی برای موج معرف شده‌های هارمونیکی جاری اولیه رانش‌ورودی به منظور حصول درصد خطا نسبت تبدیل در یک باند فرکانسی (نسبت ورودی) استفاده کرده‌ایم در درصد موردی می‌باشد.

مدل الکتریکی کامل

مدل الکتریکی کامل CT در مدار شکل (6) نشان داده شده است.

همان‌طور که دیده می‌شود این شکل تلفات فوق‌العاده قابل مقایسه است.

کننده ضریب افزایشی سطحی لمس و حلقه پیش‌ماندگی نیز از معادلات الکتریکی در این مدار با یک مدل بکار گرفته می‌شود.

یک ستوال در اینجا می‌تواند دهن خوانندگی را به‌دست آورد.

مشکل که در این مدل پیشنشاده شکل (6) باشد چیست؟ آیا بهتر نبود به جای ثابت \(n \) قرار می‌گرفت که تلاش ثابت هم‌سایه‌ای کند؟ جواب به این سوال می‌تواند کسی که تأسیس‌ها در این مقاله داده شده است.

\[\text{استقرار، سال 15، شماره 2، اسفند 1375} \]
استلال، سال ۱۵، شماره ۲، اسفند ۱۳۸۵

۶- برناوهای اصلی کامپیوتر و پردازندهای مربوط

۵-۷ برناوهایا که چرخان اولیه را پردازش می‌کنند به طور خودکار توسط معادلات (۲۰-ج) و (۲۰-د) منظور می‌شود. مدل‌پیشنهادی

فلج بسیاری از این مقاله) و (۲۰-ب) اگر کللتاه‌های بسیار کوچک باشد، مقادیر مجزا مدل شود و از طرفی خود فلجه ی پیش‌بینی RA تا نیز

جدالگان منظور کنیم، آنگاه لغایت پیش‌بینی در مدل دوباره حساب آمده و باید افزایش داده مقدارها به احتساب لغایت هسته

پیش‌بینی با مقدار استفاده شود، آنگاه مدل پیش‌بینی بهبود واز طرفی اثرات بی‌غیرخیط بودن منحکم پیش‌بینی را فقط از دیدگاه

للغایت که آن می‌دهد نیست منظور صرفه‌ای.

از شکل (۷) به‌سابقه معادلات زیر به‌دست می‌آید:

\[\frac{\mathrm{d} \Phi}{\mathrm{d} t} = (R_a + R_b)(i_1 - i_m) + (L_a + L_b) \frac{\mathrm{d} i_m}{\mathrm{d} t} \] (۱۹-الف)

\[\frac{\mathrm{d} i_m}{\mathrm{d} t} = \frac{\Phi(t)}{R_e} \times \frac{\mathrm{d} \Phi}{\mathrm{d} t} \] (۱۹-ب)

\[i_c = \frac{n}{R_e} \frac{\mathrm{d} \Phi}{\mathrm{d} t} \] (۱۹-ج)

از تكریبات معادلات (۲۰-ج) و (۲۰-د) با معادلات

(۲۱-الف) و (۲۱-ب) به‌دست می‌آیند و براساس مدل دیفرانسیل

غیرخطی پیچیده (درجه دوم زمانی با متغیر تابع (\(\Phi(t) \)) خواهد رشد) که در آن (\(t \)) چرخان اولیه CT به تنکار یا تغییر می‌کند و شماره

محاسبه خودکار این معادلات است که با پایان آن را

به‌دست آورده و به محلول مذکور از روش‌های محدود

براساس معادله (۱۵-الف) و (۱۵-ب) حل می‌شود.

در صورتی که با جایگزین سری معادلات در شکل (۶) از

بارهای خازنی و مقادیر استفاده کنیم، مجدداً به کمک معادلات

(۲۰-ج) و (۲۰-د) دور معادله دیفرانسیل غیرخطی مرتبه‌دم

دیگر بررسی حاویه شده که با آنها را می‌توان برای بررسی

دو معادله (۱۵-الف) و (۱۵-ب) به‌وسیله تکرار و اینگونه تا به

شواپدیدی (مقادیرهای شار پستمندا در هسته و لازما اولیه

دوسرخان) حل کنیم.
شکل 7-الف نمودار جریان برنامه اصلی

داده شده در بخش (2) این مقاله با روش فوق الذکر محاسبه شدند و مقادیر W=51/5 و T=21/7 به دست آمدند. منحنی کامل پسماند اندازه‌گیری و محاسبه شده این هستند در شکل (16) ملاحظه می‌کنید. بر مبنای فرض یک موج سینوسی F=500 HZ برای B 2/35 و با فرکانس Bmax=5/0 HZ حلقه‌های کوچک پسماند این هستند نیز در شکل (17) آمده است.

این زیر برنامه برای یک هسته دیگر (برای یک CT) مورد آزمایش قرار گرفت و مقادیر W=51/5 و T=21/7 برای آن محاسبه شدند (با روش سعی و خطاهای محاسبه شده در بخش (2) این مقاله با روش فوق الذکر محاسبه شدند).

تایپ اصلی برنامه کامپیوتری به دست می‌آید.

برای بکار گرفتن ضرایب مشخصات الف: سطح مقطع همستی A=8110 مم ۰.۵ و مقدار L=390 مم.

در مدل سیستم نسبت CT تا 0.2 نیز به دست می‌آید.

برای حالتی که (الف: π/4) (به معادله 3 رجوع شود) ب) قبل از وقوع خطای شبکه جریان وجود داشته و حداکثر دامنه جریان خطای 20 برای دامنه جریان خطای ماندارگرای نتیج کامپیوتری حاصله طی شکل‌های (9) تا (13) مربوط به مدل دو
دانشگاه پیام نور
�
شکل 7: نمودار جریان زیبرونامه ترسیم شده حلقه پیمانه

(منتظر جریان ثانویه ارتجاع شده به سمت اولیه است). به علاوه در
پارهای مقاومتی کم، هسته دیرتر به اشباع می‌رود. (شکل 12) شار
مناعثی کندن هسته را با همان شرایط مذکور در حالت بالا برای
یک بار خازنی، مقاومتی نشان می‌دهد. از روى این شکل ملاحظه
می‌شود که پارهای خازنی بر عکس پارهای سلوقی باعث به شدت به
عکس رفتار سلوقی می‌شود که در نتیجه تقویت شدن آن، اشباع
بردن هسته CT می‌شود و این نقطه نظر بدترین نوع پار
است. بنابراین شکل (13) می‌تواند

قسمتی به ناحیه اصلی مذکور برای یک بار مقاومتی اهمی
نمایش داده شده‌اند. از این شکل‌ها لحاظه می‌شود که دربار مقاومتی

اهمی، هسته‌ی سریع به اشباع رفته به طوری که دامنه شار مناعثی

هسته بعد از رفع خطا در شبکه تقیی ۲۰ برای شده و به محض به

شرایط رفتاری، بعث صفری و ولتاژ دوسر بار در ناحیه

جریان یک بار سریع به صفر می‌گردد و در زمان‌هایی که هسته از اشباع

خارج می‌شود دوباره جریان‌های اولیه و ثانویه به وسیله منطقی می‌شوند

55

استقلال، سال 15، شماره 2، اسفند ۱۳۷۵
مقادیر لحظه‌ای شار مغناطیسی کنده موجود در پاره‌ای سلسله نشان می‌دهد و این بدان معناست که در بارهای سلسله، نشان شادی‌های دو تایی به اشتباه رفته و حتی ممکن است به‌طور معمولی منتفی‌شود.

برای نشان دادن برتری تولیدی مدل دو قسمتی پیشنهادی بهینه در این مقاله از دو نقطه نظر اتصال خوب کامپیوتری و حجم ذخیره ساز کم و نیز دقت نسبتاً بالا نسبت به مدل‌های پیشنهادی و دوجمله‌ای و مدل‌های نمایی، بیاید دومین‌تند هسته‌ی CT از کارخانه‌ی ABB، مبتنی‌ای حاصله بر CT ولادی مربوط به دو پایه مدل‌های جدید چند جمله‌ای، دوجمله‌ای، دوجمله و مدل دو قسمتی پیشنهادی همراه با نقطه عالی انتشاره‌گری شده طی شکل‌های (۱۴ و ۱۵) به نمایش گذاشته شده‌اند. همان طور که در روی این شکل‌ها دیده می‌شود در اولین مرحله، ادعای بالاتر بودن صحت انطباق مدل پیشنهادی در این مقاله نسبت به سایر مدل‌ها به اثبات رسیده است. علت این است که در مدل دو قسمتی مانند مدل دوجمله‌ای درجه‌ی معادلات (ضرایب N) از پیش تعیین گردیده‌اند بکه براساس درصد دقیق انطباق درخواستی و میزان نیاز اقتصاد
نمایش داده شده در شکل‌های (۱۶) و (۱۷) برای بارهای مختلف سلفی و مقاومتی خالص و یا ترکیبی از آنها آزمون‌های انجام شده که نتایج آنها در شکل‌های (۱۹) تا (۲۴) نمایش داده شده‌اند. برای بررسی اثرات تلفات فوکو بر روی جریان مقاومتی هسته با مدل تکمیلی پیشنهادی در این مقاله (دو قسمتی بهینه) بدون در نظریه فلزات هیدرولیک، نیز آزمون‌های جدایگانه انجام شده است که نتایج حاصل از آنها در شکل‌های (۲۵) و (۲۶) نمایش داده شده‌اند.

۸- نتایج
در این مقاله به‌طور خلاصه نتایج زیر استخراج می‌شد:

۱. مدل کامپیوتری ترانزفاریوتروپی جریان بدون نظریه تلفات هسته (اعم از فوکو و پسماند) با در نظرگرفتن مدلهای تکمیلی چندجمله‌ای دو قسمتی بهینه پیشنهادی در این مقاله به نمایش گذاشته شده است. در مقایسه این نتایج با
شکل 13- شکل موج زمانی مغناطیسی کننده هسته CT در یک بار خازنی، مقاومتی

شکل 14- شکل موج زمانی مغناطیسی هسته CT به دست آمده از سلول‌های مختلف (مثال‌های)

شکل 15- منحنی مغناطیسی هسته CT به دست آمده از سلول‌های مختلف (مثال دوم)
شکل ۱۹- منحنی فلوئی مغناطیسی کننده هسته در مقابل جریان مغناطیسی آن در پارهای سلفی مقایسه

شکل ۲۰- منحنی فلوئی مغناطیسی کننده هسته در مقابل جریان معادل هسته در پارهای سلفی مقایسه (مثال اول)

شکل ۲۱- منحنی فلوئی مغناطیسی کننده هسته در مقابل جریان معادل هسته در پارهای سلفی مقایسه (مثال دوم)

شکل ۱۶- منحنی‌های اندازه‌گیری مشابه شدت حقل‌های مغناطیسی هسته CT

شکل ۱۷- منحنی مقایسه حلقه مغناطیسی با دو جریان موج سینوسی زمانی پایدار برای چگالی قنایی مغناطیسی هسته

شکل ۱۸- منحنی‌های هسته با افزایش جریان سیگنا به‌وجود می‌آید چگالی قنایی مغناطیسی هسته زمانی برای چگالی قنایی مغناطیسی هسته
شکل ۲۲. منحنی زمانی جریان مغناطیسی کننده مسه با توجه به مدل کاملاً هسته CT

شکل ۲۳. منحنی زمانی فاصله مغناطیسی کننده مسه با فرض بودن شار پسماند

شکل ۲۴. شکل موج زمانی جریان کل ماده مغناطیسی و تلفات مسه فقط شامل تلفات فنک. بدون در نظر گرفتن مدل حلقه پسماند.
1. current transformers
2. on-line
3. off-line
4. fault
5. auto-reclosure
6. finite difference-method

References:

9. مهروی، بهمن "محاسبات عدده", انتشارات دانشگاه صنعتی شریف.

6, No. 4, pp. 1762-1769, 1991.

