پیش بینی مشخصه‌های حالت دائم سیستم فتوولتایی بخار آب

سیدمطیعی سقایی نژاد و فرزانفرردهمند

داشتهای مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان

(درباره مقاله: 1374/9/18 - دریافت نسخه نهایی: 1375/5/9)

چکیده - در این مقاله مشخصه‌های عملکرد حالت دائم موتورهای DC مختلف (شنت، سری و تحریک جدایگان) پیش بینی می‌شود. به یک فیزیک گیری از مرکز مصرف برقه که از طریق یک مبدل کاهنده، اناجینی یا اکسکود آکسی آب از زنترانور نیز نتایج (خورشیدی) تغذیه می‌شود. در حالی که بالای انرژی استفاده شده، این مبدل از بیشترین بهره‌برداری از سیستم بهرهبرداری آب به عمل آید. به عبارت دیگر، با حداکثر کردن سرعت، بیشترین آب بخار شود. شدت می‌شود اگر بیشترین بهره‌برداری با تنظیم ضربی کار مبدل صورت یابد. همچنین با تغییرات زنترانور خورشیدی، مبدل خواهد شد. به این ترتیب از مبدل به عنوان یک دکتر نهایت استفاده شده است. نتایج در موتور تحریک جدایگان هنگامی که ضریب کار مبدل نتایج به‌دست می‌آید، به‌طور معمول به می‌شود. اضافه بر این در موتورهای سری و شنت و در بیشترین حالات موتور تحریک جدایگان با چرخش تنها با فرض کاهش نیاز حداکثر از زنترانور، بازده سیستم نسبت به تنمیان‌های زنترانور نیز حداکثر می‌شود.

Steady-State Performance Characteristics of Photovoltaic System Coupled with a Centrifugal Water Pump

S. M. Saghian and F. Farahmand

Department of Electrical Engineering, Isfahan University of Technology

ABSTRACT- In this article our objective is to obtain steady state characteristics of shunt, series, and separately excited DC motors coupled with a centrifugal water pump supplied through a step-up, step-down, and cuk converter from a photovoltaic generator. We assume that there are no storage batteries and, of course, the system must operate on maximum utilization; i.e., maximum water must be pumped. It is proven that if maximum utilization is obtained by duty ratio tuning, system utilization maximization and generator peak power tracking will be equal. Thus, a DC/DC converter is used as a peak power tracker. However, a single exception exists in the case of separately excited motors operated in constant converter duty ratio and tuned excitation for maximum utilization. In this case, system utilization maximization and generator peak power tracking will be different. In addition, with the assumption of generator peak power tracking, as in the case of shunt and series motors, system efficiency relative to generator terminals will also be maximized.

استادیار ## کارشناسی ارشد

استقلال، سال 15، شماره 2، اسفند 1375
به زیرین بالا تبدیل ارزی خورشیدی به برق ایجاد می‌کند.

استفاده کننده بیشتری بهره‌برداری را از زنیت‌فوتولیالایی به علیه آورد. برای یک سیستم خورشیدی پمپ آب، بهره‌برداری پیشرفت به فهم شناور و پیشرفت است که باید منظور با سرعت بیشتر

می‌باشد. در نهایت این فناوری با پیشرفت به زنیت‌فوتولیالایی به سیستم خورشیدی پمپ آب شود. شکل 1-1 شیمایی سیستم

تریپ مدل همچنین یک رگر تقلیل، توان عمل می‌کند و مشخصه

موتور - پمپ را منحنی توان حداکثر زنیت‌فوتولیالایی طبقه می‌کند. به

دیگر که در موتور تحریک جدابانگر برای بهره‌برداری پیشرفت وجود دارد، تنظیم جریان تحریک است. در اینجا فرض پرستاره‌ای به

تحریک از منحنی مستقلی تغذیه می‌شود و می‌توان برای کار

ثاثی می‌باشند. توانایی و استاندارد موتور مدار.

در مرجع [1] با استفاده از تغییرات سری-موتیواً

ماژول‌های زنیت‌فوتولیالایی به بهره‌برداری پیشرفت از سیستمی مشابه از

زنیت‌فوتولیالایی، با توجه به اینکه ارزی و به‌ایمیج، برداخته است. مرجع [2] مطالعه ای است در باره مشخصه‌های سیستمی

تاندونیک، انتقال مختلف موازی و پیش‌بینی آن که مستقیماً به

زنیت‌فوتولیالایی متعلق شده. در مرجع [3] انطباقی موتوهای

زا توانایی بسیاری از موارد مثال که هم‌اکنون در DC

مرجع [4] عملکرد پاره‌ای که با مراجع خورشیدی نامعلوم به

اکنون می‌باشد. به این

تشیف‌کننده توان حداکثر از زنیت‌فوتولیالایی معادل خوشنویش شد. به این

تولیدات سال 15، شماره 2، استناد

۷۴
شکل 2- مدار معادل وکتور انتقالی

منبع مشترک تغذیه شوندی موردیتارقش را فهرست دارد. مرجع [5] رفتار موتورهای مغناطیسی دانه که به‌هم‌پایی مختلفی را گردد. در مورد آیون و با وکتور مشترک تغذیه می‌شوند و مورد تحقیق قرار داده است.

مقدار این مرجع با دانستن گرفتن مبدل را به صورت مداری خاص، مدارهای دینامیکی در دایره DC را به دست آورد و با ارائه نتایج آزمایش عملی و شبیه‌سازی برای منبع V-I مشابه و گشاتو بار منتقل ممکن شده است. در انتها نیز یک روش نظیر برای کنترل ضریب کار مبدل برای کشیدن توان حادثه از وکتور ارائه شده است.

شکل 3- مشخصه وکتور انتقالی

- مشخصه وکتور انتقالی

شکل 2 و رابطه [10] به عنوان مدل مناسب برای تحلیل
حالات موتوری \(V_u \) و \(I_u \) هر دو مثبت‌اند پس باید عبارت داخل \\
پراتر نیز مثبت باشد و از آنجا رابطه (16) حاصل می‌شود. به این معناکه سرعت موتور شدت هیچ گاه از \(\frac{V_{af}}{R_f} \) بزرگتر نمی‌شود.

\[
I_f = \frac{V_u}{R_f}
\]

\[
V_a (1 - \frac{M_{af}}{R_f}) \omega = R_a I_a
\]

\[
\omega < \frac{R_f}{M_{af}}
\]

رابطه (16) از ترتیب رابطه های (6) (7) و (13) الهام گرفته شده که بتویند دقیقاً طرف تابع کدک، با استفاده از یکی از رابطه‌های (6) و (7) (5) قابل محاسبه است. توجه کنید که ضرب‌کار بالا و زیراک از بهترین عدد در جمع‌سازی جواب‌ها یا حل استحکامات برای سطوح مختلف ناشی در شکل‌های (14) از آن‌ها است. جزئی از روند محاسباتی و شکل‌های با سطح مثبت، مشخص که سطح بالا از نظر قدرتی که می‌توان با بذر یا ضریب کار آن مستقل شود. نوع میله می‌توان بوده که از نوع مختلف و ضریب کار آن مستقل شود. می‌توان رفع فاصله را با سطح هیچ‌کدام م حدود کند.

\[
I_{co} = I_{cr} \frac{a}{1-a}
\]

\[
V_{co} = \frac{V_{cr}}{a}
\]

\[
K = \begin{cases}
\frac{1}{a} & \text{مدل کاهنده} \\
\frac{1}{1+a} & \text{مدل افزاینده}
\end{cases}
\]

در مقاله حاضر وردی می‌شود که زناتور و خروجی آن به موتور متصل است (شکل 1) نذا:

\[
I_a = I_{pv} a
\]

\[
V_a = \frac{V_{pv}}{a}
\]

4- مشخصه پیم و موتور

پیم‌ها در نظر گرفته شده‌اند از نوع خورگی از مرکز است که گشادار

\[
\omega = \frac{M_{af}}{R_f} V_{pv} I_{pv}
\]

\[
\omega = \frac{M_{mp}}{R_f} V_{mp} I_{mp}
\]

tا (18) از آن‌ها است. جزئی از روند محاسباتی و شکل‌های به دست آمده مشاهده می‌شود. اگر بتویند شدت نیز مثبت باشد و از نظر قدرتی که می‌توان با بذر یا ضریب کار آن مستقل شود. نوع میله می‌توان بوده که از نوع مختلف و ضریب کار آن مستقل شود. می‌توان رفع فاصله را با سطح هیچ‌کدام م حدود کند.

\[
T_p = \frac{I_{cr}}{\omega}
\]

\[
T_{cl} = \frac{I_{cr}}{\omega + \omega_0}
\]

\[
T_m = T_{cl} + T_p = \frac{I_{cr}}{\omega + \omega_0} + \omega
\]

5- مشخصه‌های حالت دائم سیستم با موتور شنت

در موتور شنت جهت تحریک از رابطه (16) به دست می‌آید که

\[
V_a = M_{af} I_f \omega + R_a I_a
\]

\[
T_m = M_{af} I_f I_a
\]

\[
\text{هرمان با رابطه (15) رابطه (16) را تنظیم می‌دهد، در رابطه اخیر در}

\[ast \] استلال، ص 15، شماره 2، اسفند 1375

78
شکل ۴ سرعت موتور شنت برحسب تایش

شکل ۵ گشتاور موتور شنت برحسب تایش

شکل ۶ چریان موتور شنت برحسب تایش

شکل ۷ ولتاژ موتور شنت برحسب تایش

\[R = \frac{\omega T_p}{V_{pv} I_{pv}} = \frac{1}{\sqrt{5 + \frac{1}{\omega}} \sqrt{5 + \frac{1}{\omega^2 \omega}} \sqrt{5 + \frac{1}{\omega^3 \omega}} \sqrt{5 + \frac{1}{\omega^4 \omega}} \sqrt{5 + \frac{1}{\omega^5 \omega}}} \] \hspace{1cm} (18)

\[R_{\text{max}} = \frac{1}{\sqrt{5 + \frac{1}{\omega}} \sqrt{5 + \frac{1}{\omega^2 \omega}} \sqrt{5 + \frac{1}{\omega^3 \omega}} \sqrt{5 + \frac{1}{\omega^4 \omega}} \sqrt{5 + \frac{1}{\omega^5 \omega}}} \] \hspace{1cm} (19)

از شکل‌های (۴) تا (۷) می‌توان دید که میدان‌های کاهنده و افزاینده در مجموع مکمل هستند و مجموعاً مانند مبدل کاک عمل می‌کنند. در حالی که هیچ‌کدام به تنهایی نمی‌تواند به گسترش‌گی مبدل کاک است.
جبران تحریک و آرمیچر برابرین یعنی

\[I = I_a \]

از این لحاظ

\[\left(\frac{-1}{5} + \frac{-1}{6} + \frac{-1}{6} + \frac{-1}{6} \right) \left(M_{af} \omega + R_a \right) = M_{af} \varphi \ipv \]

(20)

سطح مختلف تاشی را پوشش دهد. لذا مدل کاک بهترین انتخاب در بین مدل‌هاست. مرز مشترک مدل‌های کاک‌ها و آرمیچره نیز در محل تلاقی مشخصه V-۱ موتور به مساحت زن‌تاژ توان حداکثر زن‌تاژ قرار دارد.

مشخصه‌های حالت دائم سیستم با موتور سری در موتور سری R به عناوان مقاومت درسی و ترمینالی موتور شامل مقاومت تحریک و آرمیچر در نظر گرفته شده است. به علاوه

استقلا، سال ۱۵، شماره ۲، استقلال ۱۳۷۵
شکل ۱۳ - ولتاژ موتور سری بر حسب تابش

شکل ۱۵ - بهره سیستم بر حسب تابش برای موتور سری

با توجه به آنکه یکی از دستگاه‌های شامل رابطه‌های (۱۰)، (۱۱)، (۱۲) و (۲۰) به دست آمده است. در رابطه (۲۱) نیز همان نکات مربوط به رابطه (۱۴) برقرار است. پس در موتور سری نیز بیشترین بهره‌برداری در بیشترین توان زنگ‌سازی به دست می‌آید به‌عنوان رابطه (۲۲):

\[
R = \frac{\omega T_p}{V_{pv} I_{pv}} = \frac{\omega}{\sqrt{\omega^2 + \frac{4 \omega^2}{M_{af} \omega^2 + R_a}}} (M_{af} \omega + R_a)
\]

(۲۲)

شکل‌های (۱۰) تا (۱۳) تغییرات متغیرهای موتور - پمپ بر حسب
به طریق مشابه به بخش‌های پیش و مستقل از مبدل و ضرب کار متفاوت‌های موتور قابل محاسبه است. این نتایج مذکور در مورد موتور شست دریابی نوع مبدل و ضرب کار آن در این حالت نیز برقرار است. به جز انگشت مزرع مبدل کاهده و انازایند کسب و نابینایی از جریان تحریک است. در جریان تحریک کوشک با توجه به مساحت تابش بالا قرار دارد و با انتخاب تحریک به سطوح تابش پایین‌تر انتقال می‌یابد. با انتخاب تحریک در مقدار کوچک این مزرع مبدل کاهده و انازایند کسب و نابینایی است.

$$R = \frac{\omega \frac{W}{\Omega_{m}}}{\frac{W}{\Omega_{m}}}$$

۷- مشخصه‌های حالت دائم سیستم با موتور تحریک

چک مدل

در موتور تحریک جدگان به دو صورت می‌توان به برداری را به حداکثر رساند. به این معنی که با استفاده از واسطه مبدل و دیگری با تنظیم جریان تحریک، برای عملیات بخشیدن به سطح لرزش می‌تواند به کار خود ادامه دهد.

البته جریانهای باردار و به برداری بسیار تنظیم

ضریب کار مبدل

با مشخص بودن طول می‌توان رابطه (۲۴) را به دست آورد که مشابه با رابطه‌های (۱۶) و (۲۲) طرف چپ نسبت به سرعت تابعی آبی از می‌شود و طرف راست باعث خیز از توان زنن و راست. سپس در اینجا نیز با کشیدن توان حداکثر مبدل توان عاملی که می‌شود و این عمل را به رابطه (۲۴) با مدل و ضرب کار آن و بازده سیستم برای موتور شست در اینجا نیز

$$\omega \left(\frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} \right)^{2} = \frac{P_{e}}{P_{e}} \frac{P_{e}}{P_{e}}$$

$$\omega \left(\frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} \right)^{2} = \frac{P_{e}}{P_{e}} \frac{P_{e}}{P_{e}}$$

$$\omega \left(\frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} \right)^{2} = \frac{P_{e}}{P_{e}} \frac{P_{e}}{P_{e}}$$

$$\omega \left(\frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} \right)^{2} = \frac{P_{e}}{P_{e}} \frac{P_{e}}{P_{e}}$$

$$\omega \left(\frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} \right)^{2} = \frac{P_{e}}{P_{e}} \frac{P_{e}}{P_{e}}$$

$$\omega \left(\frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} + \frac{\Omega_{m}}{\Omega_{m}} \right)^{2} = \frac{P_{e}}{P_{e}} \frac{P_{e}}{P_{e}}$$
در اینجا برخلاف دو موتور پیشین بازده برحسب سرعت اکیداً صعودی نیست. مقدار جدایکر و موافقین نیز به A وابسته است. شکل (22) یا افزایش A مقدار جدایکر و سرعت که در این نمودار جدایکر است کاهش می‌یابد. در حالی که با وجود A جدایکر بازده یک اس و در سرعت بین‌پهپی (\(R_{g} \leq M_{e} \frac{1}{1} \)) A قرار دارد و با زیرگ کردن A حتی می‌توان جدایکر بازده و سرعت مربوط به آن را به حدود صفر کاهش داد.

این مسئله باعث می‌شود تاخذکرکردن بازده از بهره‌برداری بهینه منحرف شود. البته این انحراف از هنگامی است که بیشترین سرعت قابل دستیابی، از سرعتی که بازده در آن جدایکرک است کمتر
شکل ۲۱ - پهلوسیستم در موتور تحریک جذابانه

اراضی شده شده است. رابطه‌های (۲۸) و (۲۹) ارتباط بین ای‌زئن و مدار و ولتاژ و جزئیات اصلی را نشان می‌دهند.

\[V'_{\text{mp}} = \frac{V_{\text{pv}}}{V'_{\text{mp}}} = \frac{a^{\frac{1}{2}} R_a}{\text{Im}_{\text{mp}}} \]

\[I_{\text{mp}} = I_{\text{mp}} \]

از دستگاه‌ها مشخص است که یکی مثلث‌های (۶)، (۷) و (۸) که مشخص می‌شود. حتی که در مورد دو تکیه کردن بازه، رابطه (۲۶) و شکل‌های (۷) و (۸) نیست، با این حال آنچه مسلم است با حداقل کردن سرعت، بازده نسبت به ترمینال‌ها زئن‌زاورا معدن هم حداکثر خواهد شد.

\[R = \frac{w T_p}{V_{\text{pv}} V_{\text{mp}}} \]

ب) ضرب کار مبدل ثابت و بهره‌برداری به‌ینه با تنظیم جریان تحریک

با مشخص یک بر دیگر K و در نتیجه a از رابطه‌های (۶)، (۷) و (۸) می‌توان رابطه (۷) را به دست آورد که طرف چپ آن تابع اکیداً صعودی از سرعت است. لذا برای بهره‌برداری به‌ینه باید طرف راست راکه با توان خروجی شکل (۲۶) قابل نمایش است حداکثر کرده. شکل (۲۶) این معنی را می‌رساند که \(a^{\frac{1}{2}} R_a \) مقاومت آرمیجی است که از طرف موتور به طرف زئن‌زاورا ارجاع و به طور سنجاقی جزو مقاومت داخلی زئن‌زاورا حساب شود.

بهره‌برداری به‌ینه به معنای کنترل توان حداکثر از زئن‌زاورا معلامی است که تا مقداری دخالت آن نسبت به زئن‌زاورا اصلی به اندازه
نتایج
1. در موتورهای تحريك جدากانه با تحريك ثابت، ستارگی بهبودی بیشتر، بستن و
سری اگر بهبودی بیشتر (سرعت و پیمان‌آب بیشتر) با تنظیم
ضرب کار مبدل صوت گیره، موافقت محوری مسیری و
کشیدن حداکثر توان از زناتور PV، مادر، خواهندش. اضافه برای
دو موتورهای مشتاق صوتی و سری و در بیشتر حالات موتوری تحريك
جهانی با تحریک ثابت با کشیدن توان حداکثر از زناتور PV،
باید سیستم نسبت به ترمیل‌های زناتور نیز حداکثر می‌شود. برای
باید بر پایه‌ای باشد که توان مبدل افزایش یابد.

2. در مشتری‌های حداکثر در موتورهای تحریک جداغانه با
تحریک ثابت، ستارگی مغناطیسی حداکثر مستقل از مبدل و
ضرب کار آن عمل می‌کند. نوع مبدل نیش اعمال کرد، حداکثر را به
سطح تایش خاصی محدود می‌کند و ضرب کار در اینجا نه یک
متفاوت می‌باشند، بلکه متفاوت وابسته است.

3. برای هم‌بستگی حداکثر به‌طور مثال سطح تایش با پیش‌گیری و
کاهش که به تهافت تمام سطح تایش را پیش‌گیری می‌دهد. یک
مبدل دیگر نشان دهنده در قسمت یک صفحه دو چرخش که مز مشترکان
در تلقی مشخصه‌ی V-1 موتور، بهبود با مشخصات حداکثر زناتور
قار دارد. در موتوری تحریک جداغانه در مونتاژی‌های
در جریان تحریک کوچک مزم در سطح تایش باید قرار داده که با
افزایش تحریک به سطح تایش بالایی انتقال می‌یابد.

4. در موتوری تحریک جداغانه با ضرب کار نتایج مقاوم‌ت
استاتور ارجاع شده به طرف زناتور باعث انحراف بهبودی بهینه
از کشیدن توان حداکثر زناتور است. اما می‌توان زناتور
معادلی که نسبت به زناتور اصلی از آن در افزایش
آمایش می‌شود. اضافه شدست در نظر گرفته که با مشتری توان حداکثر از
زناتور بهبودی بهینه حاصل می‌شود، به علاوه، بازده سیستم
نسبت به ترمیل‌های این زناتور معادل نیز حداکثر خواهد بود.

مراجع

8. فرهم، ف.، "نظریه خواص و عملکرد موتورهای سیستم های انرژی برقی: راهنمایی از زیرساخت‌های فتوولتاїکی"، مجموعه مقالات اختصاصی نمایشگاه سومین کنفرانس مهندسی برق ایران، اردیبهشت ۷۲، ص ۳۷۲-۳۷۷.

