Three Dimensional Analysis of Flow Past a Solid-Sphere at Low Reynolds Numbers with the Aid of Body Fitted Coordinates

Authors

Abstract

In this paper, the flow-field of an incompressible viscous flow past a solid-sphere at low Reynolds numbers (up to 270) is investigated numerically. In order to extend the capabilities of the finite volume method, the boundary (body) fitted coordinates (BFC) method is used. Transformation of the partial differential equations to algebraic relations is based on the finite-volume method with collocated variables arrangement. For solving the obtained algebraic relations, the TDMA in periodic state is used. To approximate the convective fluxes, the differencing scheme of Van leer is used and SIMPLEC handles the linkage between velocities and pressures. The verification of the code is checked by the analysis of flow past a solid sphere at low Reynolds numbers of 20 to 210. A good agreement is obtained between the present results and the available experimental and numerical data. The flow-field past a sphere at low Reynolds numbers of 210 to 270 shows that the steady non-axisymmetric regime is going to build up at the Reynolds number of 211.

Keywords: Solid-Sphere, Wake, Three Dimensional Analysis, Boundary Fitted Cordinates

Keywords


ارتقاء امنیت وب با وف ایرانی