1. Zhang, M., and Zhuomin, M., Nano/Microscale Heat Transfer, McGraw-Hill, New York, 2007.
2. Das, S. K., Choi, S.U., Pradeep, W., and Yu, T., Nanofluids: Science and Technology, John Wiley & Sons, New Jersey, 2007.
3. Rosensweig, R. E., Ferrohydrodynamics, Dover, New York, 1997.
4. Choi, S. U. S., “Enhancing Thermal Conductivity of Fluids with Nanoparticles Developments and Applications of Non-Newtonian Flows”, FED-231/MD 66, ASME, New York, pp. 99–103, 1995.
5. Wang, X., Xianfan, X., and Choi, S. U. S., “Thermal Conductivity of Nanoparticle–Fluid Mixture”, Journal of Thermophysics and Heat Transfer, Vol.13, pp. 474-480, 1999.
6. Liu, M. S., Ching-Cheng Lin, M., Huang, I. T., and Wang, C. C., “Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids”, International Communications in Heat and Mass Transfer, Vol. 32, pp.1202-1210, 2005.
7. Liu, M. S., Lin, M. C. C., Huang, I. T., and Wang, C. C., “Enhancement of Thermal Conductivity with CuO for Nanofluids”, Chemical Engineering & Technology, Vol. 29, pp. 72-77, 2006.
8. Jana, S., Salehi-Khojin, A., and Zhong W.H., “Enhancement of Fluid Thermal Conductivity
by the Addition of Single and Hybrid Nano-Additives”, Thermochimica Acta, Vol. 462, pp. 45-55, 2007.
9. Hwang, Y., Park, H.S., Lee, J.K., and Jung, W.H., “Thermal Conductivity and Lubrication Characteristics of Nanofluids”, Current Applied Physics, Vol. 1,
pp. 67-71, 2006.
10. Li, Q., Xuan, Y., and Wang, J., “Experimental Investigations on Transport Properties of Magnetic Fxluids”, Experimental Thermal and Fluid Science, Vol. 30, pp. 109-116, 2005.
11. Gavili, A., Zabihi, F., Isfahani, T.D., and Sabbaghzadeh, J., “The Thermal Conductivity of Water Base Ferrofluids under Magnetic Field”, Experimental Thermal and Fluid Science, Vol. 41, pp. 94-98, 2012.
12. Xuan, Y., and Li, Q., “Investigation on Convective Heat Transfer and Flow Features of Nanofluids”, Journal of Heat Transfer, Vol. 125, pp. 151-155, 2003.
13. Jung, J.Y., Oh, H.S., and Kwak, H.Y., “Forced Convective Heat Transfer of Nanofluids in Microchannels”, International Journal of Heat and Mass Transfer, Vol. 52, pp. 466-472, 2009.
14. Anoop, K.B., Sundararajan, T., and Das, S.K., “Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region”, International Journal of Heat and Mass Transfer, Vol. 52, pp. 2189-2195, 2009.
15. Wen, D., and Ding, Y., “Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions”, International Journal of Heat and Mass Transfer, Vol. 47, pp. 5181-5188, 2004.
16. ZeinaliHeris, S., Etemad, S.G., and Esfahany, M.N., “Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer”, International Communications in Heat and Mass Transfer, Vol. 33, pp. 529-535, 2006.
17. Tahir S., and Mital, M., “Numerical Investigation of Laminar Nanofluid Developing Flow and Heat Transfer in a Circular Channel”, Applied Thermal Engineering, Vol. 39, pp. 8-14, 2012.
18. SyamSundar, L., Naik, M.T., Sharma, K.V., Singh, M.K., and Siva Reddy, T.C., “Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube with Fe3O4 Magnetic Nanofluid”, Experimental Thermal and Fluid Science, Vol. 37, pp. 65-71, 2012.
19. Ashouri, M., Ebrahimi, B., Shafii, M.B., Saidi, M.H., and Saidi, M.S., “Correlation for Nusselt Number in Pure Magnetic Convection Ferrofluid Flow in a Square Cavity by a Numerical Investigation”, Journal of Magnetism and Magnetic Materials, Vol. 322, pp. 3607-3613, 2010.
20. Ganguly, R., Sen, S., and Puri, I.K., “Heat Transfer Augmentation Using a Magnetic Fluid under the Influence of a Line Dipole”, Journal of Magnetism and Magnetic Materials, Vol. 271, pp. 63-73, 2004.
21. Belyaev, A., and Smorodin, B., “Convection of a Ferrofluid in an Alternating Magnetic Field”, Journal of Applied Mechanics and Technical Physics, Vol. 50, pp. 558-565, 2009.
22. Li, Q., and Xuan, Y., “Experimental Investigation on Heat Transfer Characteristics of Magnetic Fluid Flow around a Fine Wire under the Influence of an External Magnetic Field”, Experimental Thermal and Fluid Science, Vol. 33, pp. 591-596, 2009.
23. Ghofrani, A., Dibaei, M.H., Hakim Sima, A., and Shafii, M.B., “Experimental Investigation on Laminar Forced Convection Heat Transfer of Ferrofluids under an Alternating Magnetic Field”, International Journal of Experimental Heat Transfer, Vol. 49, pp. 193-200, 2013.
24. Ho, C.J., Chen, M.W., and Li, Z.W., “Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects Due to Uncertainties of Viscosity and Thermal Conductivity”, International Journal of Heat and Mass Transfer, Vol. 51, pp. 4506-4516, 2008.
25. Syam Sundar, L., and Naik, M. T., “Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube with Fe3O4 Magnetic Nanofluid”, Experimental Thermal and Fluid Science, Vol. 37, pp. 65-71, 2012.
26. Cheng, D. K., Field and Wave Electromagnetics, Addison-Wesley Publishing Company, 1917.