Robust Nonlinear Control of Missile Longitudinal Dynamics in Presence of Unmatched Uncertainty

Authors

Abstract

In this paper, a robust control law is proposed, based on Lyapunov’s theory and sliding mode control theory, in
order to track the angle of attack in nonlinear longitudinal dynamics of a missile. It is assumed that there are unmatched
uncertainties in the nonlinear systems. In the proposed algorithm, the controller gains are optimized by Particle Swarm
Optimization (PSO) algorithm. For this purpose, a cost function is extracted from the output tracking error. Simulation results
show that the proposed algorithm has better performance than conventional Proportional-Integral-Derivative (PID) controller in
the presence of unmatched uncertainties.

Keywords


1. Kada. B., and Ghazzawi,Y., “Robust PID Controller Design for an UAV Flight Control System”, Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA, Vol. 2, pp. 1-6, 2011.
2. Sadraey, M., and Colgren, R., “Robust Nonlinear Controller Design for a Complete UAV Mission”, VDM Publishing, 2009.
3. Jun-fang, F., and Zhong, S., “Missile Longitudinal Autopilot Design using Backstepping Approach”, Aerospace Conference, IEEE, Big Sky, MT,
pp. 1-8, 2010.
4. Reichart, R. T., “Robust Autopilot Design using μ-Synthesis”, Proceedings of American Control Conference., San Diego, CA, pp. 2368-2373, 1990.
5. Das, A., Das, R., Mukhopadhyay, S., and Patra, A., “Nonlinear Autopilot and Observer Design for a Surface-to-surface, Skid-to-turn Missile”, Annual IEEE India Conference, Indicon , pp. 304-308, 2005.
6. Menon, P. K., and Yousefpor, M., “Design of Nonlinear Autopilots for High Angle of Attack Missiles”, AIAA Guidance, Navigation, and Control Conference, pp. 29-31, 1996.
7. Xin, M., Balakrishnan, S. N., and Stansbery, D. T., “Nonlinear Missile Autopilot Design with Theta-D Technique”, Journal of Guidance, Control, and Dynamics , Vol. 27, No. 3, pp. 406-417, 2004.
8. Xin, M., Balakrishnan, S. N., and Ohlmeyer E. J., “Integrated Guidance and Control of Missiles Withθ-D Method”, IEEE Transactions on
Control Systems Technology, Vol. 14, No. 6,
pp. 981-992, 2006.
9. Zhou, D., Mu, C., and Xu, W., “Adaptive Sliding-Mode Guidance of a Homing Missile”, Journal of Guidance, Control, and Dynamics, Vol. 22, No. 4, pp. 589-594, 1999.
10. Salamci, M. U., Oslash, M. K., Ren, Zg. O and Banks, S. P., “Sliding Mode Control with Optimal Sliding Surfaces for Missile Autopilot Design”, Journal of Guidance, Control, and Dynamics, Vol. 23, No. 4, pp. 719-727, 2000.
11. Shkolnikov, I. A., Shtessel, Y. B., Lianos, D., and Thies, A. T., “Robust Missile Autopilot Design
Via High-Order Sliding Mode Control”, Proceedings of AIAA Guidance, Navigation, and Control Conference, 2000.
12. Shima, T., Idan, M., and Golan, O. M., “Sliding-Mode Control for Integrated Missile Autopilot Guidance”, Journal of Guidance, Control, and Dynamics , Vol. 29, No. 2, pp. 250-260, 2006.
13. Seshagiri S., and Promtun E., “Sliding Mode Control of F-16 Longitudinal Dynamics”, Proceedings of American Control Conference, pp. 1770-1775, 2008.
14. Slotine, J. J., and Li, W. “Applied Nonlinear Control”, Englewood Cliffs, NJ: prentice-Hall, 1991.
15. Kim, K. J., Park, J. B., and Choi, Y. H., “Chattering Free Sliding Mode Control”, Proceedings of SICE-ICASE, International Joint Conference, pp. 732-735, 2006.
16. Weise, T., “Global Optimization Algorithms-Theory and Application”, Self-Published, 2009.

ارتقاء امنیت وب با وف ایرانی