Impression of Temperature and Oxide Layer Thickness on the Mechanical Characteristics of Aluminum ultra-thin film

Document Type : Original Article

Authors

Department of Civil Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Hamedan, Iran

Abstract

Thin aluminum films have various applications in different industries because of their special properties, including low density and high ductility. Due to the progress in the manufacturing process, it is now possible to produce ultra-thin aluminum films with very low thickness, even on the nanoscale. This paper aims to numerically investigate the mechanical behavior of ultra-thin aluminum films using the molecular dynamics (MD) method. Because of the high reactivity of aluminum in the vicinity of oxygen, the representative volume elements (RVEs) of the aluminum film are simulated based on the aluminum core-alumina shell model to study the effect of different thicknesses of the surface oxide layer. In order to stabilize the atomistic RVEs under environmental conditions, the relaxation process is applied, and the total energy of the system is minimized. Then, the relaxed configuration of RVEs is analyzed under different mechanical tests, and their different mechanical parameters such as Young's modulus, bulk modulus, shear modulus, and different material characteristics are calculated at different temperatures. The accuracy of the numerical simulations is validated by comparing the results with the experimental data. Based on the MD results, analytical relations are presented to determine the different mechanical parameters of thin aluminum films as a function of the oxide layer thickness and ambient temperature. Comparison of the proposed analytical relations with the experimental data, demonstrates their capability and generalizability for the micro- and macro-size aluminum sheets.

Keywords

Main Subjects


  1. Kozlova, I. V., Zemskova, O. V., Semenov, V. S., and Stepina, I. V., “Effect of Nano-Aluminum Component on the Cement Properties”, IOP Conference Series: Materials Science and Engineering, 1079, No. 3, p. 032071, 2021.
  2. Zhang, A., Yang, W., Ge, Y., Du, Y., and Liu, P., “Effects of Nano-SiO2 and Nano-Al2O3 on Mechanical and Durability Properties of Cement-Based Materials: A Comparative Study”, Journal of Building Engineering, 34, p. 101936, 2021.
  3. Muzenski, S., Flores-Vivian, I., Farahi, B., and Sobolev, K., “Towards Ultrahigh Performance Concrete Produced with Aluminum Oxide Nanofibers and Reduced Quantities of Silica Fume”, Nanomaterials, Vol. 10, No. 11, 2020.
  4. Ghaffarpour Jahromi, S., and Zahedi, H., “Investigating the Effecting of Nano Aluminum on Mechanical and Volumetric Properties of Clay”, (In EN), Amirkabir Journal of Civil Engineering, 50, No. 3, pp. 597-606, 2018.
  5. Yang, Z., He, L., Chen, J., Cong, H., and Ye, H., “Microstructure and Thermal Stability of an Ultrafine Al/Al2O3 Composite”, Journal of Materials Research, 18, No. 2, pp. 272-278, 2003.
  6. Balog, M., Poletti, C., Simancik, F., Walcher, M., and Rajner, W., “The Effect of Native Al2O3 Skin Disruption on Properties of Fine Al Powder Compacts”, Journal of Alloys and Compounds, 509, pp. S235-S238, 2011.
  7. Aral, G., Islam, M. M., and van Duin, A. C. T., “Role of Surface Oxidation on The Size Dependent Mechanical Properties of Nickel Nanowires: A ReaxFF Molecular Dynamics Study”, Physical Chemistry Chemical Physics, 1039/C7CP06906E Vol. 20, No. 1, pp. 284-298, 2018.
  8. Haque, M. A., and Saif, M. T. A., “Mechanical Behavior of 30–50 nm Thick Aluminum Films Under Uniaxial Tension”, Scripta Materialia, 47, No. 12, pp. 863-867, 2002.
  9. Mearini, G. T., and Hoffman, R. W., “Tensile Properties of Aluminum/Alumina Multi-Layered Thin Films”, Journal of Electronic Materials, 22, No. 6, pp. 623-629, 1993.
  10. Rosandi, Y., Luu, H. T., Urbassek, H. M., and Gunkelmann, N., “Molecular Dynamics Simulations of The Mechanical Behavior of Alumina Coated Aluminum Nanowires Under Tension and Compression”, RSC Advances, 1039/D0RA01206H Vol. 10, No. 24, pp. 14353-14359, 2020.
  11. Ma, B., Zhao, F., Cheng, X., Miao, F., and Zhang, J., “The Mechanical and Thermal Responses of Colliding Oxide-Coated Aluminum Nanoparticles”, Journal of Applied Physics, 121, No. 14, p. 145108, 2017.
  12. Zeng, H., Cheng, X., Zhang, C., and Lu, Z., “Responses of Core-Shell Al/Al2O3 Nanoparticles to Heating: ReaxFF Molecular Dynamics Simulations”, The Journal of Physical Chemistry C, 122, No. 16, pp. 9191-9197, 2018.
  13. Sen, F. G., Alpas, A. T., van Duin, A. C. T., and Qi, Y., “Oxidation-Assisted Ductility of Aluminium Nanowires”, Nature Communications, 5, No. 1, p. 3959, 2014.
  14. Khoei, A. R., Khajehpour, B., and Rezaei Sameti, A., “Surface Oxidization Effect on The Mechanical Behavior of Aluminum Nanopowders Under Triaxial Compression Test”, Applied Surface Science, 606, p. 154907, 2022.
  15. Nikravesh, Y., Rezaei Sameti, A., and Khoei, A. , “An Atomistic–Continuum Multiscale Analysis for Heterogeneous Nanomaterials and It’s Application in Nanoporous Gold Foams”, Applied Mathematical Modelling, Vol. 107, pp. 353-378, 2022.
  16. Yousefi, E., Sun, Y., Kunwar, A., Guo, M., Moelans, N., and Seveno, D., “Surface Tension of Aluminum-Oxygen System: A Molecular Dynamics Study”, Acta Materialia, 221, p. 117430, 2021.
  17. Zhou, X. W., Wadley, H. N. G., Filhol, J. S., and Neurock, M. N., “Modified Charge Transfer-Embedded Atom Method Potential for Metal/Metal Oxide Systems”, Physical Review B, 69, No. 3, p. 035402, 2004.
  18. Abdolhosseini Qomi, M. J., “Hierarchical Multi-Scale Modeling of Surface Effect in Crystalline Nano-Structures Via Cauchy-Born Hypothesis”, Sc. thesis, Sharif University of Technology, 2008.
  19. Jeon, B., Sankaranarayanan, S. K. R. S., and Ramanathan, S., “Atomistic Modeling of Ultrathin Surface Oxide Growth on a Ternary Alloy: Oxidation of Al−Ni−Fe”, The Journal of Physical Chemistry C, 115, No. 14, pp. 6571-6580, 2011.
  20. Zhang, Z., Zhou, S., and Chen, Z., “Preparation and Morphology of Single Crystal (Al2O3 Nano- Particles by Combustion Chemical Deposition”, Procedia Engineering, 27, pp. 1284-1291, 2012.
  21. Kirfel, A. and Eichhorn, K., “Accurate Structure Analysis with Synchrotron Radiation, The Electron Density in Al2O3 and Cu2O”, Acta Crystallographica Section A, 46, No. 4, pp. 271-284, 1990.
  22. Li, J., Xian, Y., Zhou, H., Wu, R., Hu, G., and Xia, R., “Microstructure-Sensitive Mechanical Properties of Nanoporous Gold: A Molecular Dynamics Study”, Modelling and Simulation in Materials Science and Engineering, 26, No. 7, p. 075003, 2018.
  23. Li, J., Li, J., Chen, Y., and Chen, J., “Strengthening Modulus and Softening Strength of Nanoporous Gold in Multiaxial Tension: Insights from Molecular Dynamics”, Nanomaterials, Vol. 12, No. 24,
  24. Clausius, R., “On a Mechanical Theorem Applicable to Heat”, Philosophical Magazine, Vol. 40, pp.122-127, 1870.
  25. Maxwell, J. , “On Reciprocal Figures, Frames and Diagrams of Forces”, Transactions of the Royal Society of Edinburgh, Vol. XXVI, pp.1-43, 1870.
  26. Maxwell, J. C., “Van Der Waals on the Continuity of the Gaseous and Liquid States”, Nature, Vol 10, pp. 477-480, 1874.
  27. Tsai, D. H., “The Virial Theorem and Stress Calculation in Molecular Dynamics”, The Journal of Chemical Physics, Vol. 70, 03, pp.1375-1382, 1979.
  28. Irving, J. H., and Kirkwood, G., “The Statistical Mechanics Theory of Transport Processes. iv. The Equations of Hydrodynamics”, The Journal of Chemical Physics, Vol. 18, No. 6, pp. 817-829, 1950.
  29. Noll, W., “Die Herleitung Der Grundgleichungen Der Thermomechanik Der Kontinua Aus Der Statistichen Mechanik”, Journal of Rational Mechanics and Analysis, Vol. 4, pp. 627-646, 1955.
  30. Hardy, R. J., “Formulas for Determining Local Properties in Molecular Dynamics Simulation: Shock Waves”, The Journal of Chemical Physics, 76, No. 1, pp. 622-628, 1982.
  31. Hardy, R. J., Root, S., and Swanson, D. R., “Continuum Properties from Molecular Simulations”, AIP Conference Proceedings, 620, pp. 363-366, 2002.
  32. Zhou, M., “A New Look at the Atomic Level Virial Stress: On Continuum-Molecular System Equivalence”, Proceedings of the Royal Society of London Series A, Vol. 459, pp. 2347-2392, 2003.
  33. Zhou, M., and McDowell, D. L., “Equivalent Continuum for Dynamically Deforming Atomistic Particle Systems”, Philosophical Magazine A, Vol. 82, pp. 2547-2574, 2002.
  34. Subramaniyan, A., and Sun, C., “Continuum Interpretation of Virial Stress in Molecular Simulations”, International Journal of Solids and Structures, Vol. 45, pp. 4340-4346, 2008.
  35. Cheng, S., and Sun, C. , “Convergence of Local Atomistic Stress Based on Periodic Lattice”,
    International Journal of Solids and Structures
    , Vol. 51, pp. 2027-2035, 2014.
  36. Khoei, A. R., Rezaei Sameti, A., and Nikravesh, Y., “A Continuum-Atomistic Multi-Scale Technique for Nonlinear Behavior of Nano-Materials”, International Journal of Mechanical Sciences, Vol. 148, pp. 191-208, 2018.
  37. Khoei, A. R., Mofatteh, H., and Rezaei Sameti, A., “A Multiscale Framework for Atomistic–Continuum Transition in Nano-Powder Compaction Process Using a Cap Plasticity Model”, International Journal of Mechanical Sciences, Vol. 255, p. 108482, 2023.
  38. Khoei, A. R., Rezaei Sameti, A., and Mofatteh, H., “Multiscale Analysis of Nano-Powder Compaction Process Using the FEM–MD Technique”, Powder Technology, Vol. 423, p. 118507, 2023.
  39. Li, Z., Gao, Y., Zhan, S., Fang, H., and Zhang, Z., “Molecular Dynamics Study on Temperature and Strain Rate Dependences of Mechanical Properties of Single Crystal Al Under Uniaxial Loading”, AIP Advances, 10, p. 075321, 2020.
  40. HE, Y., and MA, B., “Molecular Dynamics Analysis on Bending Mechanical Behavior of Alumina Nanowires at Different Loading Rates”, Transactions of Nonferrous Metals Society of China, Vol. 32, pp. 3687-3698, 2022.
  41. Erturk, A., Yildiz, Y., and Kirca, M., “Mechanical Performance and Morphological Evolution of Heat-Treated Nanoporous Gold: A Molecular Dynamics Study”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 108, pp. 15-21, 2019.
  42. Matheson, S., and Mordehai, D., “Size-Dependent Elastic Modulus of Nanoporous Au Nanopillar”, Acta Materialia, 185, No. 1, pp. 441-452, 2020.
  43. Li, J., Xian, Y., Zhou, H., Wu, R., Hu, G., and Xia, R., “Mechanical Properties of Nano Crystalline Nano Porous Gold Complicated by Variation of Grain and Ligament: A Molecular Dynamics Simulation”, Science China Technological Sciences, 61, No. 1, pp. 1353-1363, 2018.
  44. Plimpton, S., “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, Journal of Computational Physics, 117, No. 1, pp. 1-19, 1995.
  45. Stukowski, A., “A Triangulation-Based Method to Identify Dislocations in Atomistic Models”, Journal of the Mechanics and Physics of Solids, 70, pp. 314-319, 2014.
  46. Gong, M. F., Qiao, S. R., and Mei, F., “Determining Young’s modulus and Poisson’s ratio of thin hard films”, Surface Engineering, 30, No. 8, pp. 589-593, 2014/08/01 2014.
  47. . Grünwald, E., Nuster, R., Paltauf, G., Maier, T., Wimmer-Teubenbacher, R., Konetschnik, R., Kiener, D., Leitgeb, V., Kock, A., and Brunner, R., “Laser Ultrasonic Thin Film Characterization of Si-Cu-Al-Cu Multi-Layered Stacks”, Materials Today: Proceedings, 4, No. 7, Part 2, pp. 7122-7127, 2017.
  48. Haque, M. A. and Saif, M. T. A., “Thermo-Mechanical Properties of Nano-Scale Freestanding Aluminum Films”, Thin Solid Films, 484, No. 1, pp. 364-368, 2005.

ارتقاء امنیت وب با وف ایرانی