An efficient method for applying distributed loads on curved surfaces in isogeometric analysis

Document Type : Original Article

Authors

1 Department of Civil Engineering, Ferdowsi Unsiversity of Mashhad

2 Department of Mechanical Engineering, Ferdowsi University of Mashhad

Abstract

The isogeometric method was introduced to bridge the gap between computer-aided design (CAD) and analysis. This method offers advantages such as precise geometric modeling, suitable refinement methods, easy access to higher-order functions, and higher computational accuracy. The aim of this research is to provide an efficient method for applying the distributed loads on curved surfaces in isogeometric analysis. One of the main challenges in this method is how to apply boundary conditions on complex geometries. In curved models, some control points may not lie on the geometry, leading to ambiguity in the distribution of loads on these points. This study uses NURBS functions, which are standard non-interpolatory functions in CAD systems, to approximate the solution space and describe the geometry. Additionally, to leverage the capabilities of CAD tools, the process of importing geometries created in Rhino into isogeometric analysis using Bézier extraction is explained. The results confirm the accuracy and efficiency of the proposed method.

Keywords

Main Subjects


  1. Hughes, T. J., Cottrell, J. A., and Bazilevs, Y., “Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry And Mesh Refinement”, Computer Methods in Applied Mechanics and Engineering, Vol. 194, pp. 4135-4195, 2005.
  2. Dimitri, R., De Lorenzis, L., Scott, M. A., Wriggers, P., Taylor, R. L., and Zavarise, G., “Isogeometric Large Deformation Frictionless Contact Using T-Splines”, Computer Methods in Applied Mechanics and Engineering, Vol. 269, pp. 394-414, 2014.
  3. Scott, M. A., Simpson, R. N., Evans, J. A., Lipton, S., Bordas, S. P., Hughes, T. J., and Sederberg, T. W., “Isogeometric Boundary Element Analysis Using Unstructured T-Splines”, Computer Methods in Applied Mechanics and Engineering, Vol. 254, pp. 197-221, 2013.
  4. Buffa, A., Sangalli, G., and Vázquez, R., “Isogeometric Analysis for Electromagnetic Problems”, IEEE Transactions on Magnetics, Vol. 46, pp. 3305-3308, 2010.
  5. Lu, J., “Isogeometric Contact Analysis: Geometric Basis and Formulation for Frictionless Contact”, Computer Methods in Applied Mechanics and Engineering, Vol. 200, pp. 726-741, 2011.
  6. Gomez, H., Hughes, T. J., Nogueira, X., and Calo, V. M., “Isogeometric Analysis of the Isothermal Navier–Stokes–Korteweg Equations”, Computer Methods in Applied Mechanics and Engineering, Vol. 199, pp. 1828-1840, 2010.
  7. Bazilevs, Y., Calo, V. M., Hughes, T. J., and Zhang, Y., “Isogeometric Fluid-Structure Interaction: Theory, Algorithms, and Computations”, Computational Mechanics, Vol. 43, pp. 3-27, 2008.
  8. Bazilevs, Y., Calo, V. M., Zhang, Y., and Hughes, T. J., “Isogeometric Fluid–Structure Interaction Analysis with Applications to Arterial Blood Flow”, Computational Mechanics, Vol. 38, pp. 310-322, 2006.
  9. Hirschler, T., Bouclier, R., Duval, A., Elguedj, T., and Morlier, J., “The Embedded Isogeometric Kirchhoff–Love Shell: From Design to Shape Optimization of Non-Conforming Stiffened Multipatch Structures”, Computer Methods in Applied Mechanics and Engineering, Vol. 349, pp. 774-797, 2019.
  10. Hsu, M. C., Wang, C., Herrema, A. J., Schillinger, D., Ghoshal, A., and Bazilevs, Y., “An Interactive Geometry Modeling and Parametric Design Platform for Isogeometric Analysis”, Computers & Mathematics with Applications, Vol. 70, pp. 1481-1500, 2015.
  11. Lai, Y., Zhang, Y. J., Liu, L., Wei, X., Fang, E., and Lua, J., “Integrating CAD with Abaqus: a Practical Isogeometric Analysis Software Platform for Industrial Applications”, Computers & Mathematics with Applications, Vol. 74, pp. 1648-1660, 2017.
  12. Lai, Y., Liu, L., Zhang, Y. J., Chen, J., Fang, E., and Lua, J., “Rhino 3D to Abaqus: A T-Spline Based Isogeometric Analysis Software Framework”, Advances in Computational Fluid-Structure Interaction and Flow Simulation: New Methods and Challenging Computations, pp. 271-281, 2016.
  13. Li, M., Chen, Y., Zhang, M., Yang, L., Lian, H., Bordas, S. P., and Kong, R., “Platform for Isogeometric Analysis of Complex Hydraulic Structures”, Automation in Construction, Vol. 152, 2023.
  14. Meng, X., Zhang, L. Y., Zhao, Z. L., and Xie, Y. M., “A Direct Approach to Achieving Efficient Free-Form Shells with Embedded Geometrical Patterns”, Thin-Walled Structures, Vol. 185, 2023.
  15. Yang, F., Yu, T., Liu, Z., and Bui, T.Q., “Isogeometric Double-Objective Shape Optimization of Free-Form Surface Structures with Kirchhoff–Love Shell Theory”, Finite Elements in Analysis and Design, Vol. 223, 2023.
  16. Seo, Y. D., Kim, H. J., and Youn, S. K., “Isogeometric Topology Optimization Using Trimmed Spline Surfaces”, Computer Methods in Applied Mechanics and Engineering, Vol. 199, pp. 3270-3296, 2010.
  17. Bauer, A. M., Breitenberger, M., Philipp, B., Wüchner, R., and Bletzinger, K. U., “Embedded Structural Entities in NURBS-Based Isogeometric Analysis”, Computer Methods in Applied Mechanics and Engineering, Vol. 325, pp. 198-218, 2017.
  18. Breitenberger, M., Bletzinger, K. U., and Wüchner, R., “Isogeometric Layout Optimization of Shell Structures Using Trimmed NURBS Surfaces”, Proceedings of World Congress on Structural and Multidisciplinary Optimization, Orlando, pp. 19-24, 2013.
  19. Schmidt, R., Wüchner, R., and Bletzinger, K. U., “Isogeometric Analysis of Trimmed NURBS Geometries”, Computer Methods in Applied Mechanics and Engineering, Vol. 241, pp. 93-111, 2012.
  20. Salomon, D., Curves and Surfaces for Computer Graphics, Springer Science & Business Media. 2007.
  21. Sohel, F. A., Karmakar, G. C., Dooley, L. S., and Arkinstall, J. R., “Quasi-Bezier Curves Integrating Localised Information”, Pattern Recognition, Vol. 41, pp. 531-554, 2008.
  22. Farin, G. E., Curves and Surfaces For CAGD: A Practical Guide, Elsevier, 2002.
  23. Borden, M. J., Scott, M. A., Evans, J. A., and Hughes, T. J., “Isogeometric Finite Element Data Structures Based on Bézier Extraction of NURBS”, International Journal for Numerical Methods in Engineering, Vol. 87 , pp. 15-47, 2011.
  24. Scott, M. A., Borden, M. J., Verhoosel, C. V., Sederberg, T. W., and Hughes, T. J., “Isogeometric Finite Element Data Structures Based on Bézier Extraction of T‐Splines”, International Journal for Numerical Methods in Engineering, Vol. 88, pp. 126-156, 2011.
  25. Vo-Minh, T., Nguyen-Son, L., Nguyen-Van, G., and Thai-Phuong, T., “Upper Bound Limit Analysis of Circular Tunnel in Cohesive-Frictional Soils Using Isogeometric Analysis Based on Bézier Extraction”, Tunnelling and Underground Space Technology, Vol. 114, 2021.
  26. Krishnamoorthy, C. S., Finite Element Analysis: Theory and Programming, Tata McGraw-Hill, 1994.
  27. Timoshenko, S. P., and Goodier, J. N., Theory of Elasticity, Vol. 3, McGraw-Hill, New York, 1985.

ارتقاء امنیت وب با وف ایرانی