- Slater, C., Davis, C., and Strangwood, M. Compression set of thermoplastic polyurethane under different thermal-mechanical-moisture conditions, Polymer Degradation and Stability, 2011; 96 (12): 2139-2144. https://doi.org/10.1016/j.polymdegradstab.2011.09.012.
- Holden, G., Thermoplastic elastomers (Applied Plastics Engineering Handbook). William Andrew Publishing, 2011. https://doi.org/10.1016/B978-0-323-88667-3.00020-5
- Scetta, G., Selles, N., Heuillet, P., Ciccotti, M., and Creton, C. Cyclic fatigue failure of TPU using a crack propagation approach, Polymer Testing, 2021; 97: 107140.
https://doi.org/10.1016/j.polymertesting.2021.107140.
- Petrovic, Z. S. and Ferguson, J. Ployurethane Elastomers, Prog. Polym. Sci, 1991; 16(5): 695-836. https://doi.org/10.1016/0079-6700(91)90011-9
- Christensona, E. M., Anderson, J. M., Hiltner, A., and Baer, E. Relationship between nanoscale deformation processes and elastic behavior of polyurethane elastomers, Polymer, 2005; 46(25): 11744–11754. https://doi.org/10.1016/j.polymer.2005.08.083
- Qi, H. J., Boyce, M. C. Stress-Strain Behavior of Thermoplastic Polyurethane , Mechanics of Materials, 2005; 37(8): 817-839.
https://doi.org/10.1016/j.mechmat.2004.08.001.
- Ahmadi, E., Forouzan, M. R., and Mosaddegh, P. Permanent Deformation of Thermoplastic Polyurethane in the Solid-State Rolling Process, Advances in Polymer Technology, 2025; 2025(1): 8811192. https://doi.org/10.1155/adv/8811192.
- LeMonte, B. Growing Interest In TPUs For Automobile Design, Materials and Design, Vol. 19, pp. 69-72, 1998.
https://doi.org/10.1016/S0261-3069(98)00005-3.
- Yi, J., Boyce, M. C., Lee, G. F., and Balizer, E. Large deformation rate-dependent stress–strain behavior of polyurea and polyurethanes, Polymer, 2006; 47(1): 319–329.
https://doi.org/10.1016/j.polymer.2005.10.107.
- Sarva, S. S., Stephanie, D., Boyce, M. C., and Chen, W. Stress strain behavior of a polyurea and a polyurethane from low to high strain rates, 2007; 48(5): 2208-2213.
https://doi.org/10.1016/j.polymer.2007.02.058.
- Prisacariua, C., Buckley, C. P., and Caraculacu, A. A. Mechanical response of dibenzyl-based polyurethanes with diol chain extension, Polymer, 2005; 46(11): 3884–3894.
https://doi.org/10.1016/j.polymer.2005.03.046.
- Russo, R. and Thomas, E. L. Phase separation in linear and cross-linked polyurethanes, J. Macromol Sci Phy B, 1983; . 22(4): 553-575.
https://doi.org/10.1080/00222348308224776.
- O’sickey, M. J., Lawrey, B. D., and wilkes, G. L. Structure–Property Relationships of Poly (urethane urea)s with Ultra-low Monol Content Poly(propylene glycol) Soft Segments. I. Influence of Soft Segment Molecular Weight and Hard Segment Content, Journal of Applied Polymer Science, 200; 84(2): 229–243. https://doi.org/10.1002/app.10168.
- Bartolomé, L., Aurrekoetxea, J., A.Urchegui, M., and Tato, W. The influences of deformation state and experimental conditions on inelastic behaviour of an extruded thermoplastic polyurethane elastomer, Materials and Design, 2013; 49, 974–980.
https://doi.org/10.1016/j.matdes.2013.02.055.
- Miao, Y., He, H., and Li, Z., Strain hardening behaviors and mechanisms of polyurethane under various strain rate loading, Polym Eng Sci., 2020; 60(5): 1083-1092. https://doi.org/10.1002/pen.25364
- Scetta, G., Selles, N., Heuillet, P., Ciccotti, M., and Creton, C. Cyclic fatigue failure of TPU using a crack propagation approach, Polymer Testing, 2021; 97: 107140.
https://doi.org/10.1016/j.polymertesting.2021.107140
- Frick, A., Borm, M., Kaoud, N., Kolodziej, J., and Neudeck, J. Microstructure and thermomechanical properties relationship of segmented thermoplastic polyurethane (TPU), AIP Conf. Proc.,2014; 1593(1): 520–525. https://doi.org/10.1063/1.4873835.
- Cho, H., Rinaldi, G, R., and Boyce, M. C. Constitutive modeling of the rate-dependent resilient and dissipative large deformation behavior of a segmented copolymer polyurea, Soft Matter, 2013; 9: 6319-6330. https://doi.org/10.1039/c3sm27125k.
- Bergstrom, J. and Boyce, M. Constitutive modeling of the large strain timedependent behavior of elastomers, J. Mech. Phys. Solids 1998; 46(5): 931-954. https://doi.org/10.1016/S0022-5096(97)00075-6.
- Anand, L., Ames, N. M., Srivastava, V., and Chester, S. A. A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: formulation, 2009; 25(8): 1474-1494.
https://doi.org/10.1016/j.ijplas.2008.11.004.
- Boyce, M. C., Parks, D. M., and Argon, A. S. Large inelastic deformation of glassy polymers. Part I: rate dependent constitutive model, Mech. Mater., 1988; 7(1): 15-33, 1988.
https://doi.org/10.1016/0167-6636(88)90003-8.
- Mulliken, A. and Boyce, M. Mechanics of the rate-dependent elasticeplastic deformation of glassy polymers from low to high strain rates, Int. J. Solids Struct., 2006; 43(5): 1331-1356.
https://doi.org/10.1016/j.ijsolstr.2005.04.016.
- Wang, Y. and Arruda, E. M. Constitutive Modeling of a Thermoplastic Olefin Over a Broad Range of Strain Rates, Journal of Engineering Materials and Technology, 2006; 128(4): 551-558.
https://doi.org/10.1115/1.2349501.
- Yu, Z. Q., Maa, Q., Su, X. M., Lai, X. M., and Tibbenham, P. C. Constitutive modeling for large deformation behavior of thermoplastic olefin, Materials and Design, 2010; 31(4):1881–1886, 2010.
https://doi.org/10.1016/j.matdes.2009.10.059.
- Parenteau, T., Bertevas, E., Ausias, G., Stocek, R., Grohens, Y., and Pilvin, P. Characterisation and micromechanical modelling of the elasto-viscoplastic behavior of thermoplastic elastomers, Mechanics of Materials,2014; 71: 114–125, 2014.
https://doi.org/10.1016/j.mechmat.2013.06.010.
- Boyce, C., Kearb, M., Socratea, K., and Shawa, K. Deformation of thermoplastic vulcanizates, Journal of the Mechanics and Physics of Solids, 2001; 49(5): 1073 -1098.
https://doi.org/10.1016/S0022-5096(00)00066-1.
- Somarathna, H. M. C. C., Raman, S. N., Mohotti, D., Mutalib, A. A., and Badri, K. H. Hyper-viscoelastic constitutive models for predicting the material behavior of polyurethane under varying strain rates and uniaxial tensile loading, Construction and Building Materials, 2020; 236(10): 117417.
https://doi.org/10.1016/j.conbuildmat.2019.117417.
- Mohotti, D., Ali, M., Ngo, T., Lu, J., and Mendis, P. Strain rate dependent constitutive model for predicting the material behaviour of polyurea under high strain rate tensile loading, Materials and Design, 2014; 53: 830-837.
https://doi.org/10.1016/j.matdes.2013.07.020.
- Shim, J. and Mohr, D. Rate dependent finite strain constitutive model of polyurea, International Journal of Plasticity, 2011; 27(6): 868–886.
https://doi.org/10.1016/j.ijplas.2010.10.001.
- Nikoukalam, M. T. and Sideris, P. Experimental characterization and constitutive modeling of polyurethanes for structural applications, accounting for damage, hysteresis, loading rate and long term effects, Engineering Structures, 2019; 198: 109462.
https://doi.org/10.1016/j.engstruct.2019.109462.
- Bai, Y., Liu, C., Huang, G., Li, W., and Feng, S. A Hyper-Viscoelastic Constitutive Model for Polyurea under Uniaxial Compressive Loading, Polymer, 2016; 8(4): 133.
https://doi.org/10.3390/polym8040133.
- Cho, H., Mayer, S., Poselt, E., Susoff, M., Veld, P., Rutledge, G. C., Boyce, M. C. Deformation mechanisms of thermoplastic elastomers: Stress-strain behavior and constitutive modeling, Polymer 2017; 128: 87-99.
https://doi.org/10.1016/j.polymer.2017.08.065.
- Idrissa, A. K. M., Wang, K., Ahzi, S., Patlazhan, S., Rémond, Y. A composite approach for modeling deformation behaviors of thermoplastic polyurethane considering soft-hard domains transformation, 2018; 11: 381-388. https://doi.org/10.1007/s12289-017-1369-0.
- Wang, Y., Luo, W., Huang, J., Peng, C., Wang, H., Yuan, C., Chen, G., Zeng, B., and Dai, L. Simplification of Hyperelastic Constitutive Model and Finite Element Analysis of Thermoplastic Polyurethane Elastomers, Macromol. Theory Simul, 2020; 29(4): 1-12.
https://doi.org/10.1002/mats.202000009.
- Bartolom´e, L., aginagalde, A., mart´inez, A. B., urchegui, M. A., and tato, W. Experimental characterization and modelling of largestrain viscoelastic behavior ofathermoplastic polyurethane elastomer, Rubber chemistry and technology, 2013; 86(1): 146–164.
https://doi.org/ 10.5254/rct.13.87998.
- Reyes, S. I., Vassiliou, M. F., and Konstantinidis, D. Experimental characterization and constitutive modeling of thermoplastic polyurethane under complex uniaxial loading, J. Mech. Phys. Solids, 2024; 186: 105582.
https://doi.org/10.1016/j.jmps.2024.105582.
- http://www.dgxionglin-tpufilm.com
- Drobny, J. G., Handbook of Thermoplastic Elastomers. William Andrew Publishing, 2007.
- Indukuri, K. K. Deformation characteristics of thermoplastic elastomers. Ph.D. Thesis, University of Massachusetts Amherst, 2006. Available from: https://ui.adsabs.harvard.edu.
- Mullins, L. Softening of rubber by deformation, Rubber Chem. Technol, 1969; 42(1): 339-362.
https://doi.org/10.5254/1.3539210.
- Mullins, L. and Tobin, N. R. Theroretical model for the elastic behavior of filler-reinforced vulcanized rubbers. Rubber Chem. Technol, 1957; 30(2): 555-571. https://doi.org/10.5254/1.3542705.
- Marckmann, G., Verron, E., Gornet, L., Chagnon, G., Charrier, P., and Fort, P. A theory of network alteration for the Mullins effect, Journal of the Mechanics and Physics of Solids, 2002; 50(9): 2011–2028.
https://doi.org/10.1016/S0022-5096(01)00136-3.
- Rinaldi, R., Boyce, M., Weigand, S., Londono, D., and Guise, M. Microstructure evolution during tensile loading histories of a polyurea, J. Polym. Sci. Part B Polym. Phys., 2011; 49(23): 1660-1671.
https://doi.org/10.1002/polb.22352.
- Rinaldi, R., Hsieh, A., and Boyce, M. Tunable microstructures and mechanical deformation in transparent poly (urethane urea) s, J. Polym. Sci. Part B Polym. Phys., 2011; 49(2): 123-135.
https://doi.org/10.1002/polb.22128.
- Mullins, L. and Tobin, N. Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber, J. Appl. Polym. Sci., 1965; 9(9): 2993-3009.
https://doi.org/10.1002/app.1965.070090906.
- Castagna, A. M., Pangon, A., Choi, T., Dillon, G. P., and Runt, J. The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas, Macromolecules, 2012: 45(20): 8438-8444.
https://doi.org/ 10.1021/ma3016568.
- Bonart, R., Morbitzer, L., and Hentze, G. X-ray investigations concerning the physical structure of cross-linking in urethane elastomers. II. Butanediol as chain extender, Macromol. Sci., Phys., 1969; 3(2): 337-356.
https://doi.org/10.1080/00222346908205099.
- Eyring, H., Viscosity, plasticity, and diffusion as examples of absolute reaction rates, J. Chem. Phys., 1936; 4(4) 283-291.
https://doi.org/10.1063/1.1749836.
- Ree, T. and Eyring, H., Theory of non-newtonian flow. I. Solid plastic system, J. Appl. Phys., 1955; 26(7): 793-800.
https://doi.org/10.1063/1.1722098.
- Lee, E. Elastic–plastic deformation at finite strains J. Appl. Mech., 1969; 36(1): 1-6.
https://doi.org/10.1115/1.3564580.
- Boyce, M. C., Weber, G., and Parks, D. M. On the kinematics of finite strain plasticity J. Mech. Phys. Solids, 1989; 37(5): 647-665.
https://doi.org/10.1016/0022-5096(89)90033-1.
- Gurtin, M. E. and Anand, L. The decomposition F=FeFp, material symmetry, and plastic irrationality for solids that are isotropic-viscoplastic or amorphous, Int. J. Plasticity, 2005; 21(9): 686-1719. https://doi.org/10.1016/j.ijplas.2004.11.007.
- Tømmernes, V. Implementation of the Arruda-Boyce Material Model for Polymers in Abaqus. MSc Thesis, Norwegian University of Science and Technology, 2014. Available from:
https://ntnuopen.ntnu.no.
- Tomaš, I., Cisilino, A. P., and Frontini, P. M., Acccurate, efficient and robust explicit and implicit integration schemes for the arruda-boyce viscoplatic model, Mecánica Computacional, Vol. XXVII, 2008. Available from: https://www.semanticscholar.org.
- Arif, A. F. M., Pervez, T., and Mughal, M. P. Performance of a finite element procedure for hyperelastic-viscoplastic large deformation problems, Finite Elements in Analysis and Design, 2000; 34(1): 89-112.
https://doi.org/10.1016/S0168-874X(99)00031-1.
- Arruda, E. M. and Boyce, M. C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, 1993; 41(2): 389-412.
https://doi.org/10.1016/0022-5096(93)90013-6.
- Cohen, A., A Pade approximant to the inverse Langevin function, Rheol. Acta, 1991; 30(3): 270-273.
https://link.springer.com/article/10.1007/BF00366640
- Miehe, C. and Keck, J. Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation, J. Mech. Phys. Solids, 2000; 48(2): 323-365.
https://doi.org/ 10.1016/S0022-5096(99)00017-4.
- Qi, H. and Boyce, M. Constitutive model for stretch-induced softening of the stress-stretch behavior of elastomeric materials, J. Mech. Phys. Solids, 2004; 52(10): 2187-2205.
https://doi.org/10.1016/j.jmps.2004.04.008.
- Argon, A. A theory for the low-temperature plastic deformation of glassy polymers, Philos. Mag., 1973; 28(4): 839-865.
https://doi.org/10.1080/14786437308220987.
- Weber, G. and Anand, L. Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids, Computer methods in applied mechanics and engineering, 1990; 79(2): 173-202.
https://doi.org/10.1016/0045-7825(90)90131-5.
- Bergstrom, J. S., Mechanics of Solid polymers :Theory and Computational Modeling. William Andrew, 2015.