Document Type : Original Article
Authors
1 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, P. O. Box: 8415683111, Iran
2 -Department of Mechanical Engineering, Jundi-Shapur University of Technology, Dezful, Iran. - Department of Mechanical Engineering, Qom University of Technology, Qom, Iran
Abstract
Keywords
Main Subjects
9.Finotello, A., Gorla, R., Brambilla, N., Bedogni, F., Auricchio, F., and Morganti, S. Finite element analysis of transcatheter aortic valve implantation: Insights on the modelling of self-expandable devices. J. Mech. Behav. Biomed. Mater. 2021. 123:104772. https://doi.org/10.1016/j.jmbbm.2021.104772.
10.Cataloglu, A., Clark, R. E., and Gould, P. L. Stress analysis of aortic valve leaflets with smoothed geometrical data. J. Biomech. 1977. 10(3):153–158. https://doi.org/10.1016/0021-9290(77)90053-7.
11.Martin, C., and Sun, W. Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: a fatigue simulation study. J. Biomech. 2015. 48(12): 3026–3034. https://doi.org/10.1016/j.jbiomech.2015.07.031.
12.Xuan, Y., Krishnan, K., Ye, J., Dvir, D., M. Guccione, J., GE, L., et al. Stent and leaflet stresses in 29-mm second-generation balloon expandable transcatheter aortic valve. Ann. Thorac. Surg. 2017. 104(3): 773–781. https://doi.org/10.1016/j.athoracsur.2017.01.064.
13.Li, K., and Sun, W. Simulated transcatheter aortic valve deformation: A parametric study on the impact of leaflet geometry on valve peak stress. Inter. J. Num. Method. Biomed. Eng. 2017. 33(3): e02814. https://doi.org/10.1002/cnm.2814.
16.Carbonaro, D., Gallo, D., Morbiducci, U., Audenino, A., and Chiastra, C. In silico biomechanical design of the metal frame of transcatheter aortic valves: multiobjective shape and cross-sectional size optimization. Struct. Multidiscip. Optim. 2021. 64: 1825–1842. https://doi.org/10.1007/s00158-021-02944-w.
17.Morganti, S., Conti, M., Aiello, M., Valentini, A., Reali, A., and Auricchio, F. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases. J. Biomech. 2014. 47(11): 2547-2555. https://doi.org/10.1016/j.jbiomech.2014.06.007201 4.
18.Wang, Q., Kodali, S., Primiano, C., and Sun, W. Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomech. Model. Mechanobiol. 2015.14(1): 29–38. https://doi.org/10.1007/s10237-014-0583-7.
20.Nematzadeh, F., and Mostaan, H. Numerical investigation of the mechanical performance of thoracic aortic aneursysm (TAA) NiTi stent. Sci. Iranica B. 2020. 5(27):2382-2390. https://doi.org/ 10.24200/sci.2019.51077.1989.
25.Tzamtzis, S., Viquerat, J., Yap, J., Mullen, M. J., and Burriesci, G. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 2013. 35(1):125–130. https://doi.org/10.1016/j.medengphy.2012.04.009.
26.Shrivastava, S. Medical device materials. Proceedings from the Materials and Processes for Medical Devices Conferences; 2003 Sep 8-10; Anaheim, California. Asm International; 2004.Available from: https://libcatalog.usc.edu/discovery/fulldisplay.
27.Asgari, S. Anomalous plastic behavior of fine-grained MP35N alloy during room temperature tensile testing. J. Mater. Process. Technol. 2004.155(1):1905–1911. https://doi.org/10.1016/j.jmatprotec.2004.04.280.
28.Bailey J. Implications for leaflet behaviour in heavily calcified patient-specific aortic roots: simulation of transcatheter aortic valve implantation. Thesis, University of Southampton; 2015.
29.Smith, C. R., Leon, M. B., Miller, D. C., Moses, J. W., Svenssen, L. G., and Tuzcu, E. M. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011. 364(23): 2187–2198. https://doi.org/10.1056/NEJMoa1103510.
31.Martin, C., Pham, T., and Sun, W. Significant differences in the material properties between aged human and porcine aortic tissues. Eur. J. Cardio-Thora. Surg. 2011. 40(1): 28–34. https://doi.org/10.1016/j.ejcts.2010.08.056.
32.ECHONOMY. Tools for Echocardiographic Calculations [Internet]. 2019 [cited 2019 Sep 6]. Available from: http://saric.us/echonomy/CoreValve%20Sizing.htm.
33.Bianchi, M. Numerical Modeling of Transcatheter Aortic Valve Replacement: A Patient-specific Approach to Minimize Clinical Complications. State University of New York at Stony Brook; 2019.
34.Lin, S., Akula, P., and Gu, L. Mechanical performance of bovine pericardial bioprosthetic valves. J. Med. Devices. 2013. 3(7): 030926. https://doi.org/10.1115/1.4024346.