- Taheri, M. and Bathaee, S. H. Sensitivity Analysis of peripheral parameters in three dimensional nano-manipulation by using HK model. Journal of Solid and Fluid Mechanics. 2019; 9(2):123-139. (In Persian) https://doi.org/10.22044/jsfm.2019.7256.2667
- Khalili, M., Taheri, M., Bathaee, S. H., and Shakeri, F. Manipulation of DNA by Atomic force microscopy based on finite element method using contact mechanics theories. Mechanic of Advanced and Smart Materials. 2022; 1(2): 155-174. (In Persian) https://doi.org/10.52547/masm.1.2.155
- Bathaee, S. H., Sabzevari, M., and Moslemi Naeini, H. Investigation of hydroforming process loading paths based on experimental and improvement based on Sobol sensitivity analysis. Mechanic of Advanced and Smart Materials., 2022; 2(1): 53-72. https://doi.org/10.52547/masm.2.1.53
- Taheri, M. and Bathaee, S. H. Sensitivity analysis of peripheral parameters in three dimensional nano-manipulation by using HK model. Journal of Solid and Fluid Mechanics. 2019; 9(2):123-139. (In Persian) https://doi.org/10.22044/jsfm.2019.7256.2667
- Bathaee, S. H., Study of basic parameters of severe extrusion plastic deformation process in torsional angled channels based on E-Fast sensitivity analysis and DOE. Mechanic of Advanced and Smart Materials. 2021; 1(1):88-105.
https://doi.org/10.52547/masm.1.1.88
- Zarei, B., Bathaee, S. H., Taheri, M., and Momeni, M. Second phase of nanomanipulation of particles by Atomic Force Microscopy using coulomb, HK, and luGre friction models. Modares Mechanical Engineering. (In Persian) 2019; 19(1): 181-190.
https://dor.isc.ac/dor/20.1001.1.10275940.1397.19.1.25.5
- Bruni, M. , Pugliese, L. D. P., Beraldi, P., and Guerriero, F. A. Computational study of exact approaches for the adjustable robust resource-constrained project scheduling problem. Computers & Operations Research, 2018; 99: 178-190. https://doi.org/10.1016/j.cor.2018.06.016
- Glover, F. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 1986; 13(5): 533-549. https://doi.org/10.1016/0305-0548(86)90048-1
- Chen, L., and Zhang, Z., Preemption resource-constrained project scheduling problems with fuzzy random duration and resource availabilities. Journal of Industrial and Production Engineering, 2016; 33(6):373-382. https://doi.org/10.1080/21681015.2016.1140089
- Ghoddousi, P., Eshtehardian, E., Jooybanpour, S., and Javanmardi, A. Multi-mode resource-constrained discrete time–cost-resource optimization in project scheduling using non-dominated sorting genetic algorithm. Automation in Construction, 2013; 30: 216-227.2013. https://doi.org/10.1016/j.autcon.2012.11.014
- Tavana, M., Abtahi, A. R., and Khalili-Damghani, K. A new multi-objective multi-mode model for solving preemptive time–cost–quality trade-off project scheduling problems. Expert Systems with Applications, 2014; 41(4): 1830-1846.
https://doi.org/10.1016/j.eswa.2013.08.081
- Delgoshaei, A., Al-Mudhafar, A., and Ariffin, M. Developing a new method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive resources. Decision Science Letters, 2016; 5(4): 85-117.
https://doi.org/10.1007/s10479-016-2336-8
- Maghsoudlou, H., Afshar-Nadjafi, B., and Niaki, S. T. A. A multi-objective invasive weeds optimization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem. Computers & Chemical Engineering. 2016; 88: 157-169. https://doi.org/10.1016/j.compchemeng.2016.02.018
- Tirkolaee, E. B., Hadian, S., and Golpîra, H. A novel multi-objective model for two-echelon green routing problem of perishable products with intermediate depots. Journal of Industrial Engineering and Management Studies. 2019; 6(2): 196-213. https://doi.org/10.22116/jiems.2019.94158
- Shariatmadari, M., Nahavandi, N., Zegordi, S. H., and Sobhiyah, M. H. Integrated resource management for simultaneous project selection and scheduling. Computers & Industrial Engineering. 2017; 109: 39-47. https://doi.org/10.1016/j.cie.2017.04.003
- Valls, V., Ballestin, F., and Quintanilla, S. A hybrid genetic algorithm for the resource-constrained project scheduling problem European journal of operational Research, 2008; 185(2): 495-508. https://doi.org/10.1016/j.ejor.2006.12.033m
- Ballestín, F., and Leus, R. Resource‐constrained project scheduling for timely project completion with stochastic activity durations. Production and Operations Management. 2009; 18(4): 459-474. https://doi.org/10.1111/j.1937-5956.2009.01023.x
- Bruni, M. E., Pugliese, L. D. P., Beraldi, P., and Guerriero, F. A computational study of exact approaches for the adjustable robust resource-constrained project scheduling problem”, Computers & Operations Research, 2018; 99: 178-190. https://doi.org/10.1016/j.cor.2018.06.016
- Chen, H., Ding, G., Zhang, J., and Qin, S. Research on priority rules for the stochastic resource constrained multi-project scheduling problem with new project arrival”, Computers & Industrial Engineering. 2019; 137: 106060.
https://doi.org/10.1016/j.cie.2019.106060
- Rahman, H. F., Chakrabortty, R. K., and Ryan, M. J. Scheduling project with stochastic durations and time-varying resource requests: A metaheuristic approach. Computers & Industrial Engineering, 2021; 157:107363.
https://doi.org/10.1016/j.cie.2021.107363
- Suwa, H., and Morita, D., Reactive project scheduling method to enhance project progress under uncertainty. Journal of Advanced Mechanical Design, Systems, and Manufacturing. 2016; 10(3): JAMDSM0051. https://doi.org/10.1299/jamdsm.2016jamdsm0051
- Ben-Tal, A., and Nemirovski, A. Robust optimization–methodology and applications. Mathematical programming. 2002; 92(3): 453-480. https://doi.org/10.1007/s101070100286
- Bertsimas, D., and Sim, M. The price of robustness. Operations Research. 2004; 52(1): 35-53. https://doi.org/10.1287/opre.1030.0065
- Adida, E., and Joshi, P., ‟A robust optimisation approach to project scheduling and resource allocation”, International Journal of Services Operations and Informatics, 2009; 4(2): 169-193. https://doi.org/10.1504/IJSOI.2009.023421
- Goldberg, D. E., and Holland, J. H., Genetic algorithms and machine learning. Machine Learning. 3; 95-99. https://doi.org/10.1023/A:1022602019183
- Mulvey, J. M., Vanderbei, R. J., and Zenios, S. A. Robust optimization of large-scale systems. Operations Research. 1995: 43(2): 264-281. https://www.jstor.org/stable/171835
- Liu, H., Qu, S., Li, R., and Razaa, H. Bi-objective robust project scheduling with resource constraints and flexible activity execution lists. Computers & Industrial Engineering. 2021; 156: 107288.
https://doi.org/10.1016/j.cie.2021.107288
- Morshed, S. S., Shahraki, A., and Baradaran,V., A robust integrated model for resource-constrained project scheduling problem with material ordering. Journal of China University of Geosciences. 2025; 50(1): 200–216.
https://zenodo.org/records/15795653
- Lotfi, R., Sadeghi, S., Ali, S., Ramyar, S., Ghafourian, F., Farbod, E., and Robust, E. A. resilience machine learning with a risk approach for project scheduling. Engineering Reports. 2025; 7(6):e70161.
https://doi.org/10.1002/eng2.70161
- Martin, X. A., Herrero, R., Juan, A. A., and Panadero, J. An agile adaptive biased-randomized discrete-event heuristic for the resource-constrained project scheduling problem. Mathematics. 2024; 12(12): 1873. https://doi.org/10.3390/math12121873
- Qiua, K., Chena, L., Dauzere-Peres, S. A robust optimization approach for the resource-constrained project scheduling problem with uncertain activity release times. 2025; 184: 107215.
https://doi.org/10.1016/j.cor.2025.107215