بررسی تاثیر فیلت در مقاومت خستگی سایشی در انطباق محور و توپی با استفاده از معیارهای مختلف خستگی چند محوره و پارامتر دوم خستگی سایشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه تبریز

چکیده

در مقاله حاضر به بررسی عددی تاثیر ایجاد فیلت بر روی محور در مقاومت خستگی سایشی آن پرداخته شده و نتایج حاصل از مدلسازی عددی با داده های آزمایشگاهی موجود در ادبیات فن مقایسه می گردد. بمنظور بررسی مقاومت خستگی سایشی محور از معیارهای خستگی چند محوره و پارامتر دوم خستگی سایشی استفاده شده است. نتایج حاصل نشان می دهند که ایجاد فیلت بر روی محور باعث بهبود مقاومت خستگی می گردد که میزان این بهبود به شعاع فیلت و نسبت قطر محور بستگی دارد. علاوه بر این محل شکست محور نیز در اثر تغییر ابعاد فیلت و محور تغییر می کند. معیارهای خستگی چند محوره تا حدود زیادی در تخمین مقاومت خستگی محور موفق عمل می نمایند. با این حال نتایج حاصل از بررسی پارامتر دوم خستگی سایشی تطابق بهتری با نتایج حاصل از تستهای تجربی داشته و میتواند به عنوان معیاری مناسب جهت بررسی مقاومت خستگی سایشی محور مورد استفاده قرارگیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Studying the Effect of Fillet on Fretting Fatigue Strength in the Press-Fitted Axle Assembly using Different Multiaxial Fatigue Criteria and Fretting Fatigue Damage Darameter

نویسندگان [English]

  • M. Zehsaz
  • P. Shahriary
چکیده [English]

The present paper studies the effect of creating a fillet on fretting fatigue strength of an axle, using different multiaxial fatigue criteria and fretting fatigue damage parameter. Finite element method is applied to obtain stress and strain in the axle and the results obtained from modeling are compared with the experimental test data available in literature. The results show that fretting fatigue strength of the axle and fracture area depends on the ratio of  diameter to fillet radius. Multiaxial fatigue criteria is almost capable of estimating the fatigue strength of the axle . However; the results obtained from investigating fretting fatigue damage parameter are almost in accordance with the results of experimental data and consequently fretting fatigue damage parameter can be appropriately used as a criterion for estimating fretting fatigue strength of the axles.

کلیدواژه‌ها [English]

  • Fretting fatigue
  • axle and hub
  • fillet axle
  • multiaxial fatigue
1. Hirakawa, K., Toyama, K., and Kubota, M., “The Analysis and Prevention of Failure in Railway Axles”, International Journal of Fatigue, Vol. 20, No. 2, pp.135-144, 1998.
2. Waterhouse, R. B., Fretting Corrosion, Pergamon Press, Oxford, 1972.
3. Horger, O., “Influence of Fretting Corrosion on the Fatigue Strength of Fitted Members” In Symposium on Fretting Corrosion. ASTM International, 1952
4. Nishioka, K., and Komatsu, H., “Researches on Increasing the Fatigue Strength of Press-Fit Shaft”, Bulletin of JSME, Vol. 15, No. 87, pp.1019-1028, 1972.
5. Nishioka, K., and Hirakawa, K., “Fundamental Investigations of Fretting Fatigue (Part 3. Some Phenomena and Mechanics of Surface Cracks)”, Bulletin of JSME, Vol. 12, No. 51, pp. 397-407, 1969.
6. Endo, K., Practical Observations of Initiation and Propagation of Fretting Fatigue Cracks, Fretting Fatigue, Applied Science Publishers, London, pp. 127-141, 1981.
7. Makino, T., Yamamoto, M., and Hirakawa, K., “Fracture Mechanics Approach to the Fretting Fatigue Strength of Axle Assemblies”, In: D. W. Hoeppner, V. Chandrasekaran and C. B. Elliott, (Eds.), Fretting Fatigue: Current Technology and Practices, ASTM STP 1367, American Society for Testing and Materials, pp. 509-521, 2000.
8. Hills, D. A., Nowell, D., and O’Connor, J. J., “On the Mechanics of Fretting Fatigue”, Wear, Vol. 125, No. 1, pp. 129-146, 1988.
9. Szolwinski, P. M., and Farris, T. N., “Mechanics of Fretting Fatigue Crack Formation”, Wear, Vol. 198, No. 1, pp. 93-107, 1996.
10. Kubota, M., Niho, S., Sakae, C., and Kondo, Y., “Effect of Understress on Fretting Fatigue Crack Initiation of Press-Fitted Axle”, International Journal of JSME, Vol. 46, No. 3, pp. 297-302, 2003.
11. Madia, M., Beretta, S., and Zerbst, U., “An Investigation on the Influence of Rotary Bending and Press Fitting on Stress Intensity Factors and Fatigue Crack Growth in Railway Axles”, Engineering Fracture Mechanics, Vol. 75, No. 8, pp. 1906-1920, 2008.
12. Lanoue, F., Vadean, A., and Sanschagrin, B., “Finite Element Analysis and Contact Modelling Considerations of Interference Fits for Fretting Fatigue Strength Calculations”, Simulation Modelling Practice and Theory, Vol. 17, No. 10, pp. 1587-1602, 2009.
13. Alfredsson, B., “Fretting Fatigue of a Shrink-Fit Pin Subjected to Rotating Bending: Experiments and Simulations”, International Journal of Fatigue, Vol. 31, No. 10, pp. 1559-1570, 2009.
14. Zheng, J. F., Luo, J., Mo, J. L., Peng, J. F., Jin, X. S., and Zhu, M. H., “Fretting Wear Behaviors of a Railway Axle Steel”, Tribology International, Vol. 43, No. 5, pp. 906-911, 2010.
15. Peng, J. F., Liu, J. H., Cai, Z. B., Shen, M. X., Song, C., and Zhu, M. H., “Study on Bending Fretting Fatigue Damages of 7075 Aluminum Alloy”, Tribology International, Vol. 59, pp. 38-46, 2013.
16. Song, C., Shen, M. X., Lin, X. F., Liu, D. W., and Zhu, M. H., “An Investigation on Rotatory Bending Fretting Fatigue Damage of Railway Axles”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 37, No. 1, pp. 72-84, 2014.
17. Brown, M. W., and Miller, K. J. “A Theory for Fatigue Failure under Multiaxial Stress–Strain Conditions”, Proceedings of the Institution of Mechanical Engineers, Vol. 187, No. 1, pp. 745-755, 1973.
18. Kandil, F. A., Brown, M. W., and Miller, K. J., Biaxial Low Cycle Fatigue Fracture of 316 Stainless Steel at Elevated Temperatures, The Metal Society, London 280, 1982.
19. Farahani, A. V., “A New Energy Critical Plane Parameter for Fatigue Life Assessment of Various Metallic Materials Subjected to In-Phase and Out-Of-Phase Multiaxial Fatigue Loading Conditions”, International Journal of Fatigue, Vol. 22, No. 4, pp. 295-305, 2000.
20. Fatemi, A., and Socie, D. F., “A Critical Plane to Multiaxial Fatigue Damage Including Out-Of-phase Loading”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 11, No. 3, pp. 149-165, 1988.
21. Smith, K. N., Watson, P., and Topper, T. H., “A Stress–Strain Function for the Fatigue of Metals”, Journal of Materials, Vol. 5, pp. 767-778, 1970.
22. Glinka, G., Plumtree, A., and Shen, G., “A Multiaxial Fatigue Strain Energy Parameter Related to the Critical Plane”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 18, No. 1, pp. 37-46, 1995.
23. Ruiz, C., Buddington, P. H. B., and Chen, K. C., “An Investigation of Fatigue and Fretting in a Dovetail Joint”, Experimental Mechanics, Vol. 24, No. 3, pp. 208-217, 1984.
24. Ruiz, C., and Chen, K. C., Life Assessment of Dovetail Joints between Blades and Discs in Aero-Engines, Mechanical Engineering Publications, 1986.
25. Nowell, D., and Hills, D. A., “Crack Initiation Criteria in Fretting Fatigue”, Wear , Vol. 136, No. 2, pp. 329-343, 1990.
26. Neu, R. W., Pape, J. A., and Swalla, D. R., Methodologies for Linking Nucleation and Propagation Approaches for Predicting Life under Fretting Fatigue, ASTM Special Technical Publication 1367 , 2000.
27. Shigley, J. E., and Mischke, C. R., Mechanical Engineering Design 5th ed., Blacklick, Ohio, U.S.A, McGraw-Hill College, 1989.
28. ANSYS User’s Manual for Revision 13, Copyright 2010 SAS IP, Inc. All rights reserved.
29. Milestone, W. D., and Janeczko, J. T., “Friction between Steel Surfaces During Fretting”, Wear, Vol. 18, No. 1, pp. 29-40, 1971.
30. Dobromirski, J. M., “Variables in fretting fatigue: are there 50 of them?”, In: M. H. Attia, R. B. Waterhouse (Eds.), Standardization of fretting fatigue test methods and equipment, ASTM STP 1159, American Society for Testing and Materials, pp. 60-66, Philadelphia, 1992.
31. Makino, T., Kato, T., and Hirakawa, K., “Review of the Fatigue Damage Tolerance of High-Speed Railway Axles in Japan”, Engineering Fracture Mechanics, Vol. 78, No. 5, pp. 810-825, 2011.

ارتقاء امنیت وب با وف ایرانی