1. Hirakawa, K., Toyama, K., and Kubota, M., “The Analysis and Prevention of Failure in Railway Axles”, International Journal of Fatigue, Vol. 20, No. 2, pp.135-144, 1998.
2. Waterhouse, R. B., Fretting Corrosion, Pergamon Press, Oxford, 1972.
3. Horger, O., “Influence of Fretting Corrosion on the Fatigue Strength of Fitted Members” In Symposium on Fretting Corrosion. ASTM International, 1952
4. Nishioka, K., and Komatsu, H., “Researches on Increasing the Fatigue Strength of Press-Fit Shaft”, Bulletin of JSME, Vol. 15, No. 87, pp.1019-1028, 1972.
5. Nishioka, K., and Hirakawa, K., “Fundamental Investigations of Fretting Fatigue (Part 3. Some Phenomena and Mechanics of Surface Cracks)”, Bulletin of JSME, Vol. 12, No. 51, pp. 397-407, 1969.
6. Endo, K., Practical Observations of Initiation and Propagation of Fretting Fatigue Cracks, Fretting Fatigue, Applied Science Publishers, London, pp. 127-141, 1981.
7. Makino, T., Yamamoto, M., and Hirakawa, K., “Fracture Mechanics Approach to the Fretting Fatigue Strength of Axle Assemblies”, In: D. W. Hoeppner, V. Chandrasekaran and C. B. Elliott, (Eds.), Fretting Fatigue: Current Technology and Practices, ASTM STP 1367, American Society for Testing and Materials, pp. 509-521, 2000.
8. Hills, D. A., Nowell, D., and O’Connor, J. J., “On the Mechanics of Fretting Fatigue”, Wear, Vol. 125, No. 1, pp. 129-146, 1988.
9. Szolwinski, P. M., and Farris, T. N., “Mechanics of Fretting Fatigue Crack Formation”, Wear, Vol. 198, No. 1, pp. 93-107, 1996.
10. Kubota, M., Niho, S., Sakae, C., and Kondo, Y., “Effect of Understress on Fretting Fatigue Crack Initiation of Press-Fitted Axle”, International Journal of JSME, Vol. 46, No. 3, pp. 297-302, 2003.
11. Madia, M., Beretta, S., and Zerbst, U., “An Investigation on the Influence of Rotary Bending and Press Fitting on Stress Intensity Factors and Fatigue Crack Growth in Railway Axles”, Engineering Fracture Mechanics, Vol. 75, No. 8, pp. 1906-1920, 2008.
12. Lanoue, F., Vadean, A., and Sanschagrin, B., “Finite Element Analysis and Contact Modelling Considerations of Interference Fits for Fretting Fatigue Strength Calculations”, Simulation Modelling Practice and Theory, Vol. 17, No. 10, pp. 1587-1602, 2009.
13. Alfredsson, B., “Fretting Fatigue of a Shrink-Fit Pin Subjected to Rotating Bending: Experiments and Simulations”, International Journal of Fatigue, Vol. 31, No. 10, pp. 1559-1570, 2009.
14. Zheng, J. F., Luo, J., Mo, J. L., Peng, J. F., Jin, X. S., and Zhu, M. H., “Fretting Wear Behaviors of a Railway Axle Steel”, Tribology International, Vol. 43, No. 5, pp. 906-911, 2010.
15. Peng, J. F., Liu, J. H., Cai, Z. B., Shen, M. X., Song, C., and Zhu, M. H., “Study on Bending Fretting Fatigue Damages of 7075 Aluminum Alloy”, Tribology International, Vol. 59, pp. 38-46, 2013.
16. Song, C., Shen, M. X., Lin, X. F., Liu, D. W., and Zhu, M. H., “An Investigation on Rotatory Bending Fretting Fatigue Damage of Railway Axles”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 37, No. 1, pp. 72-84, 2014.
17. Brown, M. W., and Miller, K. J. “A Theory for Fatigue Failure under Multiaxial Stress–Strain Conditions”, Proceedings of the Institution of Mechanical Engineers, Vol. 187, No. 1, pp. 745-755, 1973.
18. Kandil, F. A., Brown, M. W., and Miller, K. J., Biaxial Low Cycle Fatigue Fracture of 316 Stainless Steel at Elevated Temperatures, The Metal Society, London 280, 1982.
19. Farahani, A. V., “A New Energy Critical Plane Parameter for Fatigue Life Assessment of Various Metallic Materials Subjected to In-Phase and Out-Of-Phase Multiaxial Fatigue Loading Conditions”, International Journal of Fatigue, Vol. 22, No. 4, pp. 295-305, 2000.
20. Fatemi, A., and Socie, D. F., “A Critical Plane to Multiaxial Fatigue Damage Including Out-Of-phase Loading”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 11, No. 3, pp. 149-165, 1988.
21. Smith, K. N., Watson, P., and Topper, T. H., “A Stress–Strain Function for the Fatigue of Metals”, Journal of Materials, Vol. 5, pp. 767-778, 1970.
22. Glinka, G., Plumtree, A., and Shen, G., “A Multiaxial Fatigue Strain Energy Parameter Related to the Critical Plane”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 18, No. 1, pp. 37-46, 1995.
23. Ruiz, C., Buddington, P. H. B., and Chen, K. C., “An Investigation of Fatigue and Fretting in a Dovetail Joint”, Experimental Mechanics, Vol. 24, No. 3, pp. 208-217, 1984.
24. Ruiz, C., and Chen, K. C., Life Assessment of Dovetail Joints between Blades and Discs in Aero-Engines, Mechanical Engineering Publications, 1986.
25. Nowell, D., and Hills, D. A., “Crack Initiation Criteria in Fretting Fatigue”, Wear , Vol. 136, No. 2, pp. 329-343, 1990.
26. Neu, R. W., Pape, J. A., and Swalla, D. R., Methodologies for Linking Nucleation and Propagation Approaches for Predicting Life under Fretting Fatigue, ASTM Special Technical Publication 1367 , 2000.
27. Shigley, J. E., and Mischke, C. R., Mechanical Engineering Design 5th ed., Blacklick, Ohio, U.S.A, McGraw-Hill College, 1989.
28. ANSYS User’s Manual for Revision 13, Copyright 2010 SAS IP, Inc. All rights reserved.
29. Milestone, W. D., and Janeczko, J. T., “Friction between Steel Surfaces During Fretting”, Wear, Vol. 18, No. 1, pp. 29-40, 1971.
30. Dobromirski, J. M., “Variables in fretting fatigue: are there 50 of them?”, In: M. H. Attia, R. B. Waterhouse (Eds.), Standardization of fretting fatigue test methods and equipment, ASTM STP 1159, American Society for Testing and Materials, pp. 60-66, Philadelphia, 1992.
31. Makino, T., Kato, T., and Hirakawa, K., “Review of the Fatigue Damage Tolerance of High-Speed Railway Axles in Japan”, Engineering Fracture Mechanics, Vol. 78, No. 5, pp. 810-825, 2011.