1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E., “C60: Buckminsterfullerene”, Nature,Vol. 318, pp. 162-163, 1985.
2. Lijima, S., “Helical Microtubules of Graphitic Carbon”, Nature, Vol. 354, pp. 56-58, 1991.
3. Han, Y., and Elliott, J., “Molecular Dynamics Simulations of the Elastic Properties of Polymer/Carbon Nanotube Composites”, Computational Materials Science, Vol. 39, pp. 315-323, 2007.
4. Esawi, A. M. K., and Farag M. M., “Carbon Nanotube Reinforced Composites: Potential and Current Challenges”, Materials & Design, Vol. 28, pp. 2394-2401, 2007.
5. Ruoff, R. S., Qian, D., and Liu, W. K., “Mechanical Properties of Carbon Nanotubes: Theoretical Predictions and Experimental Measurements”, Comptes Rendus Physique, Vol. 4, pp. 993-1003, 2003.
6. Thostenson, E. T., Ren, Zh., and Chou, T. W., “Advances in the Science and Technology of Carbon Nanotubes and their Composites: a Review”, Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.
7. Griebel, M., and Hamaekers, J., “Molecular Dynamics Simulations of the Elastic Moduli of Polymer-Carbon Nanotube Composites”, Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 1773-1788, 2004.
8. Fidelus, J. D., Wiesel, E., Gojny, F. H.,Schulte, K., and Wagner, H. D., “Thermo-Mechanical Properties of Randomly Oriented Carbon/Epoxy Nanocomposites”, Composites Part A: Applied Science and Manufacturing, Vol. 36, pp. 1555-1561, 2005.
9. Ming, Li., Kang. Z. H.,Yang, P., Meng, X., and Lu, Y., “Molecular Dynamics Study on Carbon/Epoxy Buckling of Single-Wall Carbon Nanotube-Based Intramolecular Junctions and Influence Factors”, Computational Materials Science, Vol. 67, pp. 390-396, 2013.
10. Seifoori, S., and Liaghat, G. H. “Low Velocity Impact of a Nanoparticle on Euler-Bernoulli Nanobeam using a Nonlocal Elasticity Model”, Journal of Modares Mechanical Engineering, Vol. 13, pp. 37-44, 2012.
11. Vodenitcharova, T., and Zhang, L. C., “Bending and Local Buckling of a Nanocomposite Beam Reinforced by a Single-Walled Carbon Nanotube”, International Journal of Solids and Structures, Vol. 43, pp. 3006-3024, 2006.
12. Shen, H. S., “Nonlinear Bending of Functionally Graded Carbon Nanotube-Reinforced Composite Plates in Thermal Environments”, Composite Structures, Vol. 91, pp. 9-19, 2009.
13. Shen, H. S., and Zhang, C. L., “Thermal Buckling and Postbuckling Behavior of Functionally Graded Carbon Nanotube-Reinforced Composite Plates”, Materials & Design, Vol. 31, pp. 3403-3411,
2010.
14. Wang, Z. X., and Shen, H. S., “Nonlinear Vibration of Nanotube-Reinforced Composite Plates in Thermal Environments”, Computational Materials Science, Vol. 50, pp. 2319-2330, 2011.
15. Shen, H. S., “Postbuckling of Nanotube-Reinforced Composite Cylindrical Shells in Thermal Environments, Part I: Axially-Loadedshells”, Composite Structures, Vol. 93, pp. 2096-2108,
2011.
16. Shen, H. S., “Postbuckling of Nanotube-Reinforced Composite Cylindrical Shells in Thermal Environments, Part II: Pressure-Loaded Shells”, Composite Structures, Vol. 93, pp. 2496-2503,
2011.
17. Shen, H. S., “Thermal Buckling and Postbuckling Behavior of Functionally Graded Carbon Nanotube Reinforced Composite Cylindrical Shells”, Composites Part B: Engineering, Vol. 43, pp. 1030-1038, 2012.
18. Shen, H. S., and Xiang, Y., “Nonlinear Vibration of Nanotube-Reinforced Composite Cylindrical Shells Inthermal Environments”, Computer Methods in Applied Mechanics and Engineering, Vol. 213-216, pp. 196-205, 2012.
19. Zhu, P., Lei, Z. X., and Liew K. M., “Static and
Free Vibration Analyses of Carbon Nanotube-Reinforced Composite Plates using Finite Element Method with First Order Shear Deformation Plate Theory”, Composite Structures, Vol. 94, pp. 1450-1460, 2012.
20. Sobhani Aragh, B., Nasrollah Barati A. H., and Hedayati H., “Eshelby-Mori-Tanaka Approach for Vibrational Behavior of Continuously Graded Carbon Nanotube-Reinforced Cylindrical Panels”, Composites Part B: Engineering, Vol. 43, pp. 1943-1954, 2012.
21. Yas, M. H., and Heshmati M., “Dynamic Analysis of Functionally Graded Nanocomposite Beams Reinforced by Randomly Oriented Carbon Nanotube under the Action of Moving Load”, Applied Mathematical Modelling, Vol. 36, pp. 1371-1394, 2012.
22. Wang, Z. X., and Shen H. S., “Nonlinear Dynamic Response of Nanotube-Reinforced Composite Plates Resting on Elastic Foundations in Thermal Environments”, Nonlinear Dynamics, Vol. 70, pp. 735-754, 2012.
23. Alibeigloo, A., “Static Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Plate Embedded in Piezoelectric Layers by using Theory of Elasticity”, Composite Structures, Vol. 95, pp. 612-622, 2013.
24. Lei, Z. X., Leiw, K. M., and Yu, J. K., “Buckling Analysis of Functionally Graded Carbon Nanotube-Reinforced Composite Plates using the Element-Free kp-Ritz Method”, Composite Structures, Vol. 98, pp. 160-168, 2013.
25. Shen, H. S., and Zhu, Z. H., “Postbuckling of Sandwich Plates with Nanotube-Reinforced Composite Face Sheets Resting on Elastic Foundations”, European Journal of Mechanics -A/Solids, Vol. 35, pp. 10-21, 2012.
26. Wang, Z. X., and Shen, H. S., “Nonlinear Vibration and Bending of Sandwich Plates with Nanotube-Reinforced Composite Face Sheets”, Composites Part B: Engineering, Vol. 43, pp. 411-421, 2012.
27. Reddy , J. N., “Mechanics of Laminated Composite Plates and Shells: Theory and Analysis”, Boca Raton (FL): CRC Press, 2004.
28. Rezaee Pajand, M., and Alamatian, J., “The Dynamic Relaxation Method using New Formulation for Fictitious Mass and Damping”, Structural Engineering and Mechanics, Vol. 34, pp. 109-133, 2010.
29. Zhang, L. C., Kadkhodayan, M., and Mai, Y. W., “Development of the maDR method”, Computers & Structures, Vol.52, pp.1-8, 1994.
30. Underwood, P., “Dynamic Relaxation, in: Computational Method for Transient Analysis”, Elsevier, Amsterdam, 1983.