1. Patel, A. J., and Ehmann, K. F., “Calibration of a
Hexapod Machine Tool Using a Redundant Leg”,
International Journal of Machine Tools &
Manufacture, Vol. 40, pp. 489-512, 2000.
2. Enferadi, J., and Akbarzadeh Tootoonchi, A.,
“Accuracy and Stiffness Analysis of a 3-RRP
Spherical Parallel Manipulator”, Robotica, Vol. 29,
pp. 193-209, 2011.
3. Enferadi, J., and Akbarzadeh, A., “A Novel
Approach for Forward Position Analysis of a
Double-Triangle Spherical Parallel Manipulator”,
European Journal of Mechanics- A/Solids, Vol. 29,
No. 3, pp. 348-355, 2010.
4. Kamali, K., and Akbarzadeh, A., “A Novel Method
for Direct Kinematics Solution of Fully Parallel
Manipulators Using Basic Regions Theory”, Journal
of Systems and Control Engineering, Vol. 225,
pp. 683-701. 2011.
5. Gregorio, R. Di., and Parenti-Castelli, V., “Position
Analysis in Analytical Form of the 3-PSP
Mechanism”, Journal of Mechanical Design, Vol.
123, pp. 51-57, 2001.
6. Rezaei, A., Akbarzadeh, A., and Mahmoodi Nia, P.,
“Position, Jacobian and Workspace Analysis of a 3-
PSP Spatial Parallel Manipulator”, Robotics and
Computer-Integrated Manufacturing, Vol. 29,
pp. 158-173, 2013.
7. Zhang, Y., Liu, H., and Wu, X., “Kinematics
Analysis of a Novel Parallel Manipulator”,
Mechanism and Machine Theory, Vol. 44, pp. 1648-
1657, 2009.
8. Merlet, J. P., “Direct Kinematics of Parallel
Manipulators”. Robotics and Automation, IEEE
Transactions on, Vol. 9, No. 6, pp. 842-846, 1993.
9. Der-Ming, Ku., “Direct Displacement Analysis of a
Stewart Platform Mechanism”, Mechanism and
Machine Theory, Vol. 34, No. 3, pp. 453-465, 1999.
10. Sadjadian, H., and Taghirad, H. D., “Numerical
Methods for Computing the Forward Kinematics of a
Redundant Parallel Manipulator”, Proceedings of the
IEEE Conference on Mechatronics and Robotics,
Aachen, Germany, 2004.
11. Liu, K., Fitzgerald, J. M., and Lewis., F. L.,
“Kinematic Analysis of a Stewart Platform
Manipulator”, IEEE Transactions on Industrial
Electronics, Vol. 40, No. 2, pp. 282-293, 1993.
12. Li, Y., and Xu, Q., “Kinematic Analysis of a 3-PRS
Parallel Manipulator”, Robotics and Computer-
Integrated Manufacturing, Vol. 23, No. 4, pp.395-
408, 2007.
13. Cheng, H. H., Lee, J. J., and Penkar, R., “Kinematic
Analysis of a Hybrid Serial-and-parallel-driven
Redundant Industrial Manipulator”, International
Journal of Robotics and Automation, Vol. 10, No. 4,
pp. 159-166, 1995.
14. Parikh, P. J., and Lam, S. S., “A Hybrid Strategy to
Solve the Forward Kinematics Problem in Parallel
Manipulators”, Robotics, IEEE Transactions on,
Vol. 21, No. 1, pp. 18-25, 2005.
15. Laosiritaworn, W., and Chotchaithanakorn, N.,
“Artificial Neural Networks Parameters Optimization
with Design of Experiments: An Application in
Ferromagnetic Materials Modeling”, Chiang Mai
Journal of Science, Vol. 36, No. 1, pp. 83-91, 2009.
16. Sekar, B. D., Dong, M. C., Shi, J., and Hu, X. Y.,
“Fused Hierarchical Neural Networks for
Cardiovascular Disease Diagnosis”, Sensors Journal,
IEEE, Vol. 12, No. 3, pp. 644-650, 2012.
17. Boudreau, R., Levesque, G., and Darenfed, S.,
“Parallel Manipulator Kinematics Learning Using
Holographic Neural Network Models”, Robotics and
Computer-Integrated Manufacturing, Vol. 14. No. 1,
pp. 37-44, 1998.
18. Sadjadian, H., Taghirad, H. D., and Fatehi, A.,
“Neural Networks Approaches for Computing the
Forward Kinematics of a Redundant Parallel
Manipulator”, International Journal of Computational
Intelligence, Vol. 2, No. 1, pp. 40-47, 2005.
19. Kang, R., Chanal, H., Bonnemains, T., Pateloup, S.,
Branson D. T., and Ray, P., “Learning the Forward
Kinematics Behavior of a Hybrid Robot Employing
Artificial Neural Networks”, Robotica, Vol. 30, No.
5, pp. 847-855, 2012.
20. Raghavan, M., “The Stewart Platform of General
Geometry Has 40 Configurations”, ASME Journal of
Mechanical Design, Vol. 115, No. 2, pp. 277-282,
1993.
21.Husty, M. L., “An Algorithm for Solving the Direct
Kinematics of General Stewart-Gough Platforms”,
Mechanism and Machine Theory, Vol. 31, No. 4,
pp. 365-380, 1996.
22. Innocenti, C., “Forward Kinematics in Polynomial
Form of the General Stewart Platform”, Journal of
Mechanical Design, Vol. 123, No. 2, pp. 254-260,
2001.
23. Dhingra, A., Almadi, A., and Kohli, D., “A Gröbner-
Sylvester Hybrid Method for Closed-Form
Displacement Analysis of Mechanisms”, 25th
Biennial Mechanisms Conference, Atlanta GA,
Paper: DETC98/MECH-5969, 1998.
24. Kardan, I., and Akbarzadeh, A., “An Improved
Hybrid Method for Forward Kinematics Analysis of
Parallel Robots”, Advanced Robotics, Vol. 29, No. 6,
pp. 401-411, 2015.
25.Darvishi, M. T., and Barati., A. “A Third-order
Newton-type Method to Solve Systems of Nonlinear
Equations”, Applied Mathematics and Computation,
Vol. 187, No. 2, pp. 630-635, 2007.
26.Hagan, M. T., and Demuth, H. B., “Neural Networks
for Control”, Preceeding of 1999 American Control
Conference, Vol. 3, No. 5, pp. 1642-1656, 1999.
27. Hagan, M. T., Demuth, H. B., and Jesus, O. De., “An
Introduction to the Use of Neural Networks in
Control Systems”, International Journal of Robust
and Nonlinear Control, Vol. 12, No. 11, pp. 959-985,
2002.