بررسی کوپلینگ پیزوالکتریکی و آنیزتروپی بر انتشار امواج صوتی در بلوره صوتی لیتیوم نیوباته

نویسنده

دانشکده فنی، دانشگاه تهران

چکیده

سرعت صوت در اغلب مواد بستگی به الاستیسیته و چگالی مواد دارد، ولی بررسی انتشار امواج در بلوره‌های صوتی پیزوالکتریکی‌ به‌سبب آنیزتروپی و به‌ویژه کوپلینگ پیزوالکتریکی یک مسأله کاربردی مهم و چالش‌ برانگیز است. در این مقاله با استفاده از حل تحلیلی- عددی معادله کریستوفل اصلاح یافته، براساس مفهوم سرعت گروهی، اثر کوپلینگ پیزوالکتریکی و آنیزتروپی بر سرعت امواج صوتی (شبه طولی، شبه عرضی عمودی و شبه عرضی افقی) در ویفرهای مختلف بلوره صوتی لیتیوم نیوباته (آنیزتروپی قوی) بررسی می‌شود و با داده‌های آزمایشی تصدیق می‌شود و دامنه سرعت‌هایی که این بلوره صوتی می‌تواند دارا باشد، تعیین می‌شود. نتایج این مطالعه برای طراحی فرامواد صوتی و بلورهای فونونی و موجبرهای پایه پیزوالکتریکی کاملاً اساسی است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Piezoelectric Coupling and Anisotropy Effect on Acoustic Wave Propagation at LithiumNiobate Crystalloacoustic

نویسنده [English]

  • sh Rezaei
چکیده [English]

The acoustic wave velocity depends on elasticity and density at most materials, but because of anisotropy and especially piezoelectric coupling effect, the acoustic wave propagation at piezoelectric based crystalloacoustic materials, is an applied and challenging problem. In this paper, using modified Christoffel's equation based on group velocity concept, the effect of anisotropy and piezoelectric coupling at different wafers of lithium niobate crystalloacoustic (strong anisotropy) on acoustic wave velocity (semi-longitudinal, semi-vertical transverse wave and semi-horizontal transverse wave) is investigated, and validated by experimental data. Then, the acoustic wave velocity ranges that can be supported are determined. The result of this study can be essential at acoustic metamaterials design, Phononic crystal and piezoelectric based wave-guides.

کلیدواژه‌ها [English]

  • Crystalloacoustic
  • Lithium niobate
  • Acoustic wave propagation
  • Piezoelectric coupling
1. Alshits, V. I., and Chadwick, P., “Concavities on the Zonal Slowness Section of a Transversely Isotropic Elastic Material”, Wave Motion, Vol. 25, No. 4, pp. 347-359, 1997.
2. Chadwick, P., “Wave Propagation in Transversely Isotropic Elastic Media. I. Homogeneous Plane Waves”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 422, pp. 23-66, 1989.
3. Musgrave, M. J. P., “On an Elastodynamic Classification of Orthorhombic Media”, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 374, pp. 401-429, 1981.
4. Payton, R., Elastic Wave Propagation In Transversely Isotropic Media, Martinus Nijhoff Publication, 1983.
5. Holm, P. and Lothe, J., “The Topological Nature of the Polarization Field for Body Waves in Anisotropic Elastic Media” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 370, pp. 331-350, 1980.
6. Khatkevich, A. G., “Acoustic Axes in Crystals”. Soviet physics, Crystallography, Vol. 7, No. 5, pp. 601-604, 1963.
7. Marvin, J. W., and Weber, J., Handbook of Optical Materials. University of California by CRC Press LLC, 2003.
8. Newnham, R. E., Properties Of Materials: Anisotropy, Symmetry, Structure, Kindle edition, pp. 391, Oxford University Press Inc., Oxford-New York, 2005.
9. Norris, A. N., “Acoustic Axes in Elasticity”, Wave Motion, Vol. 40, No. 4, pp. 315-328, 2004.
10. Parton, V. Z., and Kudryavtsev, B. A., Electromagnetoelasticity:Piezoelectrics and Electrically Conductive Solids, Taylor & Francis, 1988.
11. Royer, D., and Dieulesaint, E., Elastic Waves in Solids I: Free and Guided Propagation, translated by DP Morgan, Springer-Verlag, New York, 2000.
12. Ting, T. C. T., “Longitudinal and Transverse Waves in Anisotropic Elastic Materials”, Acta Mechanica, Vol. 185, No. 3-4, pp.147-164, 2006.
13. Ting, T. C. T., “On Anisotropic Elastic Materials for which one Sheet of the Slowness Surface is a Sphere or a Cross-Section of a Slowness Sheet is a Circle”, Wave Motion, Vol. 43, No. 4, pp. 287-300, 2006.
14. Topolov, V. Y., and Bowen, C. R., From Smart Materials to Piezo-Composites, Electromechanical Properties in Composite Based on Ferroelectrics, Springer, London, pp. 1-10, 2009.
15. Yang, J., Basic Equations, Special Topics in the Theory of Piezoelectricity, Springer, London, pp. 1-12, 2009.
16. Zhou, Q., Zhang, S., and Lü, Y., “Acoustic Anisotropy of Piezoelectric PbB 4O7 Crystals Studied by Laser Ultrasonics”, Materials Science and Engineering: B, Vol. 83, No. 1, pp. 249-253, 2001.
17. Zuo-Guang, Y., Handbook of Dielectric, Piezoelectric and Ferroelectric Materials. Synthesis, Properties and applications, Woodhead Publishing Limited, Cambridge, England, 2008.

تحت نظارت وف ایرانی