1. Humphreys, M., and Hatherly, F., Recrystallization and Related Annealing Phenomena, Second Edition, Elsevier, 2004.
2. Bever, M., Holt, D., and Titchener, A., “The Stored Energy of Cold Work”, Progress in Materials Science, Vol. 17, pp. 5-177, 1973.
3. Rosakis, P., Rosakis, A., Ravichandran, G., and Hodowany, J., “A Thermodynamic Internal Variable Model for the Partition of Plastic Work into Heat and Stored Energy in Metals”, Journal of the Mechanics and Physics of Solids, Vol. 48, pp. 581-607, 2000.
4. Benzerga, A., Brechet, Y., Needleman, A., and derGiessen, E. V., “The Stored Energy of Cold Work: Predictions from Discrete Dislocation Plasticity”, Acta Materialia, Vol. 53, pp. 4765-4779, 2005.
5. Anand, L., Gurtin, M. E., and Reddy, B. D., “The Stored Energy of Cold Work, Thermal Annealing, and other Thermodynamic Issues in Single Crystal Plasticity at Small Length Scales”, International Journal of Plasticity, Vol. 64, pp. 1-25, 2015.
6. McBride, A., Bargmann, S., and Reddy, B., “A Computational Investigation of a Model of Single-crystal Gradient Thermoplasticity that Accounts for the Stored Energy of Cold Work and Thermal Annealing”, Computational Mechanics, Vol. 55, pp. 755-769, 2015.
7. Anand, L., “Single-crystal Elasto-viscoplasticity: Application to Texture Evolution in Polycrystalline Metals at Large Strains”, Computer Methods in Applied Mechanics and Engineering, Vol. 193, pp. 5359-5383, 2004.
8. Jafari, M., Jamshidian, M., and Ziaei-Rad, S., “A Finite-deformation Dislocation Density-based Crystal Viscoplasticity Constitutive Model for Calculating the Stored Deformation Energy”, International Journal of Mechanical Sciences, Vol. 128-129, pp. 486-498, 2017.
9. Gurtin, M. E., “A Finite-deformation, Gradient Theory of Single-crystal Plasticity with Free Energy Dependent on the Accumulation of Geometrically Necessary Dislocations”, International Journal of Plasticity, Vol. 26, pp. 1073-1096, 2010.
10. Popova, E., Staraselski, Y., Brahme, A., Mishra, R., and Inal, K., “Coupled Crystal Plasticity Probabilistic Cellular Automata Approach to Model Dynamic Recrystallization in Magnesium Alloys”, International Journal of Plasticity, Vol. 66, pp. 85-102, 2015.
11. Kalidindi, S., Bronkhorst, C. A., and Anand, L., “Crystallographic Texture Evolution in Bulk De- formation Processing of FCC Metals”, Journal of the Mechanics and Physics of Solids, Vol. 40, pp. 537-569, 1992.
12. Stojakovic, D., Doherty, R., Kalidindi, S., and Landgraf Fernando J. G., “Thermomechanical Processing for Recovery of Desired ⟨001 ⟩ Fiber Texture in Electric Motor Steels”, Metallurgical and Materials Transactions A, Vol. 39, pp. 1738-1746, 2008.
13. Lele, S. P., and Anand, L., “A Large-deformation Strain-Gradient Theory for Isotropic Viscoplastic Materials”, International Journal of Plasticity, Vol. 25, pp. 420-453, 2009.
14. Fried, E., and Gurtin, M. E., “Dynamic Solid-solid Transitions with Phase Characterized by an Order Parameter”, Physica D: Nonlinear Phenomena, Vol. 72, pp. 287-308, 1994.
15. Gurtin, M. E., Anand, L., and Lele, S. P., “Gradient Single-crystal Plasticity with Free Energy Dependent on Dislocation Densities”, Journal of the Mechanics and Physics of Solids, Vol. 55, pp. 1853-1878, 2007.
16. Lee, M., Lim, H., Adams, B., Hirth, J., and Wagoner, R., “A Dislocation Density-based Single Crystal Constitutive Equation”, International Journal of Plasticity, Vol. 26, pp. 925-938, 2010.
17. Hosford, W., Fleischer, R., and Backofen, W., “Tensile Deformation of Aluminum Single Crystals at Low Temperatures”, Acta Materialia, Vol. 8, pp. 187-199, 1960.
18. Nouri, N., Ziaei-Rad, V., and Ziaei-Rad, S., “An Approach for Simulating Microstructures of Polycrystalline Materials”, Computational Mechanics, Vol. 52, pp. 181-192, 2012.