1. Bashiri, M., and Shiri, M., “Design of Closed-loop Supply Chain Network with Considering of Multi-part Collection Centers under Uncertainty with two Heuristic and Meta-heuristic Algorithms”, Industrial Engineering Research in Production Systems, Vol. 3, No. 5, pp. 27-41, 2015, (In Farsi).
2. Li, J., Wang, S., and Cheng, T. E., “Competition and Cooperation in a Single-retailer Two-supplier Supply Chain with Supply Disruption”, International Journal of Production Economics, Vol. 124, No. 1, pp. 137-150, 2010.
3. Melo, M. T., Nickel, S., and Saldanha-da-Gama, F., “Facility Location and Supply Chain Management-A Review”, European Journal of Operational Research, Vol. 196. No. 2, pp. 401-412, 2009.
4. Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., Van der Laan, E., Van Nunen, J. A., and Van Wassenhove, L. N., “Quantitative Models for Reverse Logistics: A Review”, European Journal of Operational Research, Vol. 103, No. 1, pp. 1-17, 1997.
5. Krikke, H., van Harten, A., and Schuur, P., “Business Case Oce: Reverse Logistic Network Re-design for Copiers”, OR-Spektrum, Vol. 21, No. 3, pp. 381-409, 1999.
6. Min, H., and Ko, H.-J., “The Dynamic Design of a Reverse Logistics Network From the Perspective of Third-party Logistics Service Providers”, International Journal of Production Economics, Vol. 113, No. 1, pp. 176-192, 2008.
7. Listeş, O., and Dekker, R., “A Stochastic Approach to a Case Study for Product Recovery Network Design”, European Journal of Operational Research, Vol. 160, No. 1, pp. 268-287, 2005.
8. Pishvaee, M. S., Farahani, R. Z., and Dullaert, W., “A Memetic Algorithm for Bi-objective Integrated Forward/reverse Logistics Network Design”, Computers & Operations Research, Vol. 37, No. 6, pp. 1100-1112, 2010.
9. Pishvaee, M., and Torabi, S., “A Possibilistic Programming Approach for Closed-loop Supply Chain Network Design under Uncertainty”, Fuzzy Sets and Systems, Vol. 161, No. 20, pp. 2668-2683, 2010.
10. Pishvaee, M. S., Rabbani, M., and Torabi, S. A., “A Robust Optimization Approach to Closed-loop Supply Chain Network Design under Uncertainty”, Applied Mathematical Modelling, Vol. 35, No. 2, pp. 637-649, 2011.
11. Ramezani, M., Bashiri, M., and Tavakkoli-Moghaddam, R., “A Robust Design for a Closed-loop Supply Chain Network under an Uncertain Environment”, The International Journal of Advanced Manufacturing Technology, Vol. 66, No. 5-8, pp. 825-843, 2013.
12. Hassanzadeh, Amin, S., and Zhang, G., “A Multi-objective Facility Location Model for Closed-loop Supply Chain Network under Uncertain Demand and Return”, Applied Mathematical Modelling, Vol. 37, No. 6, pp. 4165-4176, 2013.
13. Qi, L., Shen, Z. -J. M., and Snyder, L. V., “The Effect of Supply Disruptions on Supply Chain Design Decisions”, Transportation Science, Vol. 44, No. 2, pp. 274-289, 2010.
14. Aryanezhad, M. -B., Jalali, S. G., and Jabbarzadeh, A., “An Integrated Supply Chain Design Model with Random Disruptions Consideration”, African Journal of Business Management, Vol. 4, No. 12, pp. 2393-2401, 2010.
15. Cui, T., Ouyang, Y., and Shen, Z. -J. M., “Reliable Facility Location Design under the Risk of Disruptions”, Operations Research, Vol. 58, No. 4, part-1, pp. 998-1011, 2010.
16. Vahdani, B., Tavakkoli-Moghaddam, R., Modarres, M., and Baboli, A., “Reliable Design of a Forward/reverse Logistics Network under Uncertainty: A Robust-M/M/c Queuing Model”, Transportation Research Part E: Logistics and Transportation Review, Vol. 48, No. 6, pp. 1152-1168, 2012.
17. Vahdani, B., Tavakkoli-Moghaddam, R., Jolai, F., and Baboli, A., “Reliable Design of a Closed Loop Supply Chain Network under Uncertainty: An Interval Fuzzy Possibilistic Chance-constrained Model”, Engineering Optimization, Vol. 45, No. 6, pp. 745-765, 2013.
18. Azad, N., Saharidis, G. K., Davoudpour, H., Malekly, H., and Yektamaram, S. A., “Strategies for Protecting Supply Chain Networks Against Facility and Transportation Disruptions: An Improved Benders Decomposition Approach”, Annals of Operations Research, Vol. 210, No. 1, pp. 125-163, 2013.
19. Hatefi, S., and Jolai, F., “Robust and Reliable Forward-reverse Logistics Network Design under Demand Uncertainty and Facility Disruptions”, Applied Mathematical Modelling, Vol. 38, No. 9, pp. 2630-2647, 2014.
20. El-Sayed, M., Afia, N., and El-Kharbotly, A., “A Stochastic Model for Forward-reverse Logistics Network Design Under Risk”, Computers & Industrial Engineering, Vol. 58, No. 3, pp. 423-431, 2010.
21. Ramezani, M., Kimiagari, A. M., Karimi, B., and Hejazi, T. H.,“Closed-loop Supply Chain Network Design under a Fuzzy Environment”, Knowledge-Based Systems, Vol. 59, pp. 108-120, 2014.
22. Diabat, A., Battaïa, O., and Nazzal, D., “An Improved Lagrangian Relaxation-based Heuristic for a Joint Location-inventory Problem”, Computers & Operations Research, Vol. 61, pp. 170-178, 2015.
23. Kang, J. -H., and Kim, Y. -D., “Inventory Control in a Two-Level Supply Chain with Risk Pooling Effect”, International Journal of Production Economics, Vol. 135, pp. 116-124, 2012.
24. Badri, H., Bashiri, M., and Hejazi, T. H., “Integrated Strategic and Tactical Planning in a Supply Chain Network Design with a Heuristic Solution Method”, Computers & Operations Research, Vol. 40, pp. 1143-1154, 2013.
25. Fisher, M. L., “The Lagrangian Relaxation Method for Solving Integer Programming Problems”, Management Science, Vol. 50, pp. 1861-1871, 2004.