1. Gupta., S., “Thermal Buckling of Orthotropic Cylindrical Shells”, Fibre Science and Technology, Vol. 6, pp. 139-145, 1973.
2. Dinga, H., Wu, J., and Xu, B., “Theoretical Analyses of Thermal Post-Buckling Problems of Liner Shells”, Nuclear Engineering Design, Vol. 180, pp. 243-250, 1998.
3. Reddy, T. Y., and Srinath, H., “Elastic Stresses in Rotating Anisotropic Annular Disk of Variable Thickness and Variable Density”, International Journal of Mechanical Science, Vol. 16, pp. 85-89, 1974.
4. Basset, A. B., “On the Extension and Flexure of Cylindrical and Spherical Thin Elastic Shells”, Philosophical Transactions of the Royal Society A, Vol. 181, pp. 433-480, 1990.
5. Obata, Y., and Noda, N., “Steady Thermal Stresses in a Hollow Circular Cylinder and a Hollow Sphere of a Functionally Gradient Material”, Journal of Thermal Stress, Vol. 17, No. 3, pp. 471-487, 1994.
6. Horgan, C. O., and Chan, A. M., “The Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linear Elastic Materials”, Journal of Elasticity, Vol. 55, No. 1, pp. 43-59, 1999.
7. Salzar, R. S., “Functionally Graded Metal Matrix Composite Tubes”, Composite Engineering, Vol. 5, No. 7, pp. 891-900, 1995.
8. Patel, B. P., Shukla, K. K., and Nath, Y., “Thermal Buckling of Laminated Cross-ply Oval Cylindrical Shells”, Composite Structures, Vol. 65, pp. 217-229, 2004.
9. Shen, H. Sh., “Torsional Buckling and Postbuckling of FGM Cylindrical Shells in Thermal Environments”, International Journal of Non-Linear Mechanics, Vol. 44: pp. 644-657, 2009.
10. Reddy, J. N., and Liu, C. F., “Higher-Order Shear Deformation Theory of Laminated Elastic Shells”, International Journal of Engineering Sscience, Vol. 23, pp. 319-330, 1985.
11. Duc, N., and Toan Than, P., “Nonlinear Dynamic Response and Vibration of Shear Deformable Imperfect Eccentrically Stiffened S-FGM Circular Cylindrical Shells Surrounded on Elastic Foundations”, Aerospace Science and Technology, Vol. 40, pp. 115-127, 2015.
12. Sun, J., Xu, X., Lim, C. W., and Qiao, W., “Accurate Buckling Analysis for Shear Deformable FGM Cylindrical Shells under Axial Compression and Thermal Loads”, Composite Structures, Vol. 123, pp. 246-256, 2015.
13. Amabili, M., “A Comparison of Shell Theories for Large-Amplitude Vibrations of Circular Cylindrical Shells: Lagrangian Approach”, Journal of Sound and Vibration, Vol. 264, pp. 1091-1125, 2003.
14. Wang, L., and Ni, Q., “A Reappraisal of the Computational Modelling of Carbon Nanotubes Conveying Viscous Fluid”, Mechanics Research Communications, Vol. 36, pp. 833-837, 2009.
15. Dai, H. L., Wang, L., Qian, Q., and Ni, Q., “Vortex-Induced Vibrations of Pipes Conveying Pulsating Fluid”, Ocean Engineering, Vol. 77, pp. 12-22, 2014.
16. Shi, D. L., and Feng, X. Q., “The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composties”, Journal of Engineering Materials and Technology ASME, Vol. 126, pp. 250-270, 2004.
17. Shen, H., and Xiang, Y., “Nonlinear Vibration of Nanotube-Reinforced Composite Cylindrical Shells in Thermal Environments”, Computational. Methods in Applied. Mechanics and. Engenering, Vol. 213, pp. 196-211, 2011