تحلیل اثر سرعت سیال روی ناپایداری لوله‌های بتنی مسلح شده با نانو‌ذرات حاوی جریان سیال

نویسندگان

1 گروه مهندسی عمران، واحد شهرقدس، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه مهندسی عمران، واحد رودهن، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

با توجه به کاربرد فراوان لوله­‌های حاوی جریان سیال در مهندسی عمران، ارائه یک مدل ریاضی مناسب برای تحلیل پایداری آنها ضروری است. بدین منظور یک لوله بتنی تقویت شده با با نانوذرات سیلیس و حاوی جریان سیال درنظر گرفته می­‌شود. هدف این تحقیق بررسی تحلیل پایداری سازه و نشان دادن اثر نانو­ذرات و سیال درون آن است. سازه با المان پوسته استوانه­‌ای و با تئوری ردی مدل­‌سازی می‌­شود. برای به‌دست آوردن نیروی ناشی از سیال درونی از معادله ناویر- استوکس استفاده می­‌شود. برای در­نظر گرفتن اثر نانو­ذرات در لوله از مدل موری– تاناکا استفاده شده به‌طوری که اثرات انباشتگی نانو­ذرات لحاظ شده است. درنهایت با استفاده روش انرژی و اصل همیلتون، معادلات حاکم بر سازه استخراج می­‌شود. برای تحلیل پایداری سازه از روش تفاضلات مربعی استفاده می­شود و اثر پارامترهای مختلف همچون درصد حجمی نانو­ذرات، انباشتگی نانوذرات، سیال درون لوله و پارامترهای هندسی بررسی شده است. نتایج نشان می­‌دهد که وجود نانو­ذرات به‌عنوان تقویت­‌کننده لوله، منجر به تأخیر ناپایداری سازه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of the Effect of Fluid Velocity on the Instability of Concrete Pipes Reinforced with Nanoparticles Conveying the Fluid Flow

نویسندگان [English]

  • A. Zamani Nouri 1
  • P. Ebrahimi 2
1
2
چکیده [English]

With respect to the great application of pipes conveying fluid in civil engineering, presenting a mathematical model for their stability analysis is essential. For this purpose, a concrete pipe, reinforced by iron oxide (Fe2O3) nanoparticles, conveying fluid  is considered. The goal of this study is to investigate the structural stability to show the effects of the inside fluid and the nanoparticles. The structure was modeled by a cylindrical shell and using Reddy theory. To obtain the force induced by the inside fluid, the Navier-Stokes equation was used. To assume the effect of the nanoparticles in the pipe, the Mori-Tanaka model was utilized so that the effects of agglomeration of nanoparticles could be considered. Finally, by applying energy method and the Hamilton's principle, the governing equations were derived. For the stability analysis of the structure, differential quadrature method (DQM) was proposed and the effects of different parameters such as volume fraction of the nanoparticles and agglomeration of the nanoparticles inside fluid and geometrical parameters were investigated. The results showed that the existence of the nanoparticles as the reinforcement for the pipe led to the delay in the pipe instability.

کلیدواژه‌ها [English]

  • Concrete pipe
  • nanoparticles
  • Reddy theory
  • DQM
  • Navier-Stokes equation
1. Gupta., S., “Thermal Buckling of Orthotropic Cylindrical Shells”, Fibre Science and Technology, Vol. 6, pp. 139-145, 1973.
2. Dinga, H., Wu, J., and Xu, B., “Theoretical Analyses of Thermal Post-Buckling Problems of Liner Shells”, Nuclear Engineering Design, Vol. 180, pp. 243-250, 1998.
3. Reddy, T. Y., and Srinath, H., “Elastic Stresses in Rotating Anisotropic Annular Disk of Variable Thickness and Variable Density”, International Journal of Mechanical Science, Vol. 16, pp. 85-89, 1974.
4. Basset, A. B., “On the Extension and Flexure of Cylindrical and Spherical Thin Elastic Shells”, Philosophical Transactions of the Royal Society A, Vol. 181, pp. 433-480, 1990.
5. Obata, Y., and Noda, N., “Steady Thermal Stresses in a Hollow Circular Cylinder and a Hollow Sphere of a Functionally Gradient Material”, Journal of Thermal Stress, Vol. 17, No. 3, pp. 471-487, 1994.
6. Horgan, C. O., and Chan, A. M., “The Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linear Elastic Materials”, Journal of Elasticity, Vol. 55, No. 1, pp. 43-59, 1999.
7. Salzar, R. S., “Functionally Graded Metal Matrix Composite Tubes”, Composite Engineering, Vol. 5, No. 7, pp. 891-900, 1995.
8. Patel, B. P., Shukla, K. K., and Nath, Y., “Thermal Buckling of Laminated Cross-ply Oval Cylindrical Shells”, Composite Structures, Vol. 65, pp. 217-229, 2004.
9. Shen, H. Sh., “Torsional Buckling and Postbuckling of FGM Cylindrical Shells in Thermal Environments”, International Journal of Non-Linear Mechanics, Vol. 44: pp. 644-657, 2009.
10. Reddy, J. N., and Liu, C. F., “Higher-Order Shear Deformation Theory of Laminated Elastic Shells”, International Journal of Engineering Sscience, Vol. 23, pp. 319-330, 1985.
11. Duc, N., and Toan Than, P., “Nonlinear Dynamic Response and Vibration of Shear Deformable Imperfect Eccentrically Stiffened S-FGM Circular Cylindrical Shells Surrounded on Elastic Foundations”, Aerospace Science and Technology, Vol. 40, pp. 115-127, 2015.
12. Sun, J., Xu, X., Lim, C. W., and Qiao, W., “Accurate Buckling Analysis for Shear Deformable FGM Cylindrical Shells under Axial Compression and Thermal Loads”, Composite Structures, Vol. 123, pp. 246-256, 2015.
13. Amabili, M., “A Comparison of Shell Theories for Large-Amplitude Vibrations of Circular Cylindrical Shells: Lagrangian Approach”, Journal of Sound and Vibration, Vol. 264, pp. 1091-1125, 2003.
14. Wang, L., and Ni, Q., “A Reappraisal of the Computational Modelling of Carbon Nanotubes Conveying Viscous Fluid”, Mechanics Research Communications, Vol. 36, pp. 833-837, 2009.
15. Dai, H. L., Wang, L., Qian, Q., and Ni, Q., “Vortex-Induced Vibrations of Pipes Conveying Pulsating Fluid”, Ocean Engineering, Vol. 77, pp. 12-22, 2014.
16. Shi, D. L., and Feng, X. Q., “The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composties”, Journal of Engineering Materials and Technology ASME, Vol. 126, pp. 250-270, 2004.
17. Shen, H., and Xiang, Y., “Nonlinear Vibration of Nanotube-Reinforced Composite Cylindrical Shells in Thermal Environments”, Computational. Methods in Applied. Mechanics and. Engenering, Vol. 213, pp. 196-211, 2011

تحت نظارت وف ایرانی