بهینه‌سازی اتلاف گرمایی در سلول‌های خورشیدی نقطه کوانتومی با روش المان محدود

نویسنده

پژوهشکده فیزیک کاربردی و ستاره‌شناسی، دانشگاه تبریز

چکیده

از آنجا که قسمت عمده اتلاف اساسی در سلول خورشیدی با نوار میانی، اتلاف گرمایی است، این مقاله به مطالعه و بررسی آن پرداخته است. ساختار مورد مطالعه، سلول خورشیدی  p-i-n  با جنس  AlP < sub>ySb(1-y)   است که آرایه‌ای منظم از نقاط کوانتومی هرمی مربع‌القاعده از جنس  InAs(1-x)Nx   در ناحیه ذاتی آن به‌منظور تشکیل نوار میانی قرار گرفته است. نوار میانی ایجاد شده که از نظر الکتریکی ایزوله است، باعث تقسیم گاف انرژی سلول خورشیدی به دو زیرگاف انرژی می‌شود. محاسبه اتلاف گرمایی منوط به دانستن مقدار انرژی این زیرگاف‌ها است. بنابراین، برای محاسبه آنها، ابتدا موقعیت انرژی مینی‌نوار با حل معادله شرودینگر سه‌بعدی برای سلول واحد متشکل از یک نقطه کوانتومی به‌روش المان محدود محاسبه می‌شود. سپس، پهنای مینی‌نوار با محاسبه ضریب جذب به‌دست می‌آید. درنهایت، با بررسی اثر غلظت مولی نیتروژن و فسفر، اندازه نقاط کوانتومی و فاصله بین آنها، مقدار کمینه اتلاف گرمایی برای ساختار بهینه سلول خورشیدی گفته شده به‌دست می‌آید.
  

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Thermalisation Loss in the Quantum Dot Solar Cells using a Finite Element Method

نویسنده [English]

  • Z. Arefinia
چکیده [English]

As thermalisation loss is the dominant loss process in the quantum dot intermediate band solar cells (QD-IBSCs), it has been investigated and calculated for a QD-IBSC, where IB is created by embedding a stack of InAs(1-x) Nx QDs with a square pyramid shape in the intrinsic layer of the AlP < sub>ySb(1-y) p-i-n structure. IB, which is an optically coupled but electrically isolated mini-band, divides the total band gap of AlP < sub>ySb(1-y) into two sub-band gaps. To obtain the thermalisation loss of AlP < sub>ySb(1-y)/InAs(1-x)Nx QD-IBSCs, the position and width of IB in the band gap of AlP < sub>ySb(1-y) should be calculated. The position of IB, which is equal to the first eigen-energy of a unit cell of QD, is obtained by solving the 3D Schrödinger equation with a finite-element method and the width of IB is obtained by the absorption characteristics. Then, with the investigation of the effect of nitrogen and phosphorous molar fraction, QDs size and the  distance between the QDs on the thermalisation loss, the minimized loss for the optimized structure of AlP < sub>ySb(1-y)/InAs(1-x)Nx QD-IBSCs is obtained

کلیدواژه‌ها [English]

  • Intermediate band
  • Thermalization loss
  • Quantum dot
  • solar cell
1. Arefinia, Z., and Asgari, A., “Optical and Electrical Modeling of Solar Cells Based on Graphene/Si Nanowires with Radial p-i-n Junctions”, Solar Energy Materials and Solar Cells, Vol. 137, pp. 146-153, 2015.
2. Arefinia, Z., and Asgari, A., “A New Modeling Approach for Graphene Based Silicon Nanowire Schottky Junction Solar Cells”, Journal of Renewable and Sustainable Energy, Vol. 6, p. 043132, 2014.
3. Arefinia, Z., and Asgari, A., “A New Graphene-on-Silicon Solar Cells by Introducing an Interlayer of Silicon Quantum Dots”, In 23rd Iranian Conference on Electrical Engineering (ICEE), pp. 1415-1418, 2015.
4. Dai, Y., Polly, S. J., Hellstroem, S., Slocum, M. A., Bittner, Z. S., Forbes, D. V., Roland, P. J., Ellingson, R. J., and Hubbard, S. M “Effect of Electric Field on Carrier Escape Mechanisms in Quantum Dot Intermediate Band Solar Cells”, Journal of Applied Physics, Vol. 121, p. 013101 2017.
5. Li T., and Dagenais, M., “High Saturation Intensity in InAs/GaAs Quantum Dot Solar Cells and Impact on the Realization of the Intermediate Band Concept at Room-Temperature”, Applied Physics Letters, Vol. 110, p. 061107, 2017.
6. Utrilla, A. D., Reyes, D. F., Llorens, J. M., Artacho, I., Ben, T., González, D., Gačević, Ž., Kurtz, A., Guzman, A., Hierro, A., and Ulloa, J. M., “Thin GaAsSb Capping Layers for Improved Performance of InAs/GaAs Quantum Dot Solar Cells”, Solar Energy Materials and Solar Cells, Vol. 159, pp. 282-289, 2017.
7. Cappelluti, F., Gioannini, M., and Khalili, A., “Impact of Doping on InAs/GaAs Quantum-Dot Solar Cells: A Numerical Study on Photovoltaic and Photoluminescence Behavior”, Solar Energy Materials and Solar Cells, Vol. 157, pp. 209-220, 2016.
8. Grundmann, M., Stier, O., and Bimberg, D., “InAs/GaAs Pyramidal Quantum Dots: Strain Distribution, Optical Phonons, and Electronic Structure”, Physical Review B, Vol. 52, pp. 11969-11981, 1995.
9. Kalyuzhnyy, N. A., Mintairov, S. A., Salii, R. A., Nadtochiy, A. M., Payusov, A. S., Brunkov, P. N., Nevedomsky, V. N., Shvarts, M. Z., Martí, A., Andreev, V. M., and Luque, A., “Increasing the Quantum Efficiency of InAs/GaAs QD Arrays for Solar Cells Grown by MOVPE Without using Strain-Balance Technology”, Progress in Photovoltaics: Research and Applications, Vol. 24, pp. 1261-1271, 2016.
10. Utrilla, A. D., Ulloa, J. M., Gačević, Ž., Reyes, D. F., Artacho, I., Ben, T., González, D., Hierro, A., and Guzman, A., “Impact of Alloyed Capping Layers on the Performance of InAs Quantum Dot Solar Cells”, Solar Energy Materials and Solar Cells, Vol. 144, pp. 128-135, 2016.
11. Hubbard, S., Cress, C., Bailey, C., Raffaelle, R., Bailey, S., and Wilt, D., “Effect of Strain Compensation on Quantum Dot Enhanced GaAs Solar Cells”, Applied Physics Letters, Vol. 92, p. 123512, 2008.
12. Luque, A., Linares, P. G., Antolín, E., Cánovas, E., Farmer, C. D., Stanley, C. R., and Martí, A., “Multiple Levels in Intermediate Band Solar Cells”, Applied Physics Letters, Vol. 96, p. 013501, 2010.
13. Cedola, A., Cappelluti, F., and Gioannini, M., “Dependence of Quantum Dot Photocurrent on the Carrier Escape Nature in InAs/GaAs Quantum Dot Solar Cells”, Semiconductor Science and Technology, Vol. 31, p. 025018, 2016.
14. Cuadra, L., Marti, A., and Luque, A., “Influence of the Overlap Between the Absorption Coefficients on the Efficiency of the Intermediate Band Solar Cell”, IEEE Transactions on Electron Devices, Vol. 51, pp. 1002-1007, 2004.
15. Klimov, V. I., “Detailed-Balance Power Conversion Limits of Nanocrystal-Quantum-Dot Solar Cells in the Presence of Carrier Multiplication”, Applied Physics Letters, Vol. 89, p. 123118, 2006.
16. Luque, A., Marti, A., and Cuadra, L., “Thermodynamic Consistency of Sub-Bandgap Absorbing Solar Cell Proposals”, IEEE Transactions on Electron Devices, Vol. 48, pp. 2118-2124, 2001.
17. Mellor, A., Luque, A., Tobías, I., and Martí, A., “Realistic Detailed Balance Study of the Quantum Efficiency of Quantum Dot Solar Cells”, Advanced Functional Materials, Vol. 24, pp. 339-345, 2014.
18. Sabeur, A., Jiang, J., and Imran, A., “Numerical Modeling of Shape and Size Dependent Intermediate Band Quantum Dot Solar Cell”, In Proceedings of SPIE - The International Society for Optical Engineering, 2015.
19. Arefinia, Z., “Modelling of Intrinsic Loss Processes in the Intermediate Band Solar Cells”, Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, Vol. 74, pp. 51-58, 2019.
20. Hirst, L. C., and Ekins‐Daukes, N. J., “Fundamental Losses in Solar Cells”, Progress in Photovoltaics: Research and Applications, Vol. 19, pp. 286-293, 2011.
21. Dupré, O., Vaillon, R., and Green, M. A., “Physics of the Temperature Coefficients of Solar Cells”, Solar Energy Materials and Solar Cells, Vol. 140, pp. 92-100, 2015.
22. Alharbi F. H., and Kais, S., “Theoretical Limits of Photovoltaics Efficiency and Possible Improvements by Intuitive Approaches Learned from Photosynthesis and Quantum Coherence”, Renewable and Sustainable Energy Reviews, Vol. 43, pp. 1073-1089, 2015.
23. Da, Y., Xuan, Y., and Li, Q., “Quantifying Energy Losses in Planar Perovskite Solar Cells”, Solar Energy Materials and Solar Cells, Vol. 174, pp. 206-213, 2018.
24. Martí, A., Cuadra, L., and Luque, A., “Partial Filling of a Quantum Dot Intermediate Band for Solar Cells”, IEEE Trans Electron Devices, Vol. 48, pp. 2394-2399, 2001.
25. Persson P. -O., and Strang, G., “A Simple Mesh Generator in MATLAB”, SIAM Review, Vol. 46, pp. 329-345, 2004.
26. Tomić, S., Jones, T. S., and Harrison, N. M., “Absorption Characteristics of a Quantum Dot Array Induced Intermediate Band: Implications for Solar Cell Design”, Applied Physics Letters, Vol. 93, p. 263105, 2008.
27. Berbezier, A., and Aeberhard, U., “Impact of Nanostructure Configuration on the Photovoltaic Performance of Quantum-Dot Arrays”, Physical Review Applied, Vol. 4, p. 044008, 2015.
28. Tomic, S., Sogabe, T., and Okada, Y., “In-plane Coupling Effect on Absorption Coefficients of-InAs/GaAs Quantum Dots Arrays for Intermediate Band Solar Cell”, Progress in Photovoltaics: Research and Applications, Vol. 23, pp. 546-558, 2015.
29. Arefinia Z., and Asgari, A., “Optimization Study of a Novel Few-Layer Graphene/Silicon Quantum Dots/Silicon Heterojunction Solar Cell Through Opto-Electrical Modeling”, IEEE Journal of Quantum Electronics, Vol. 54, pp. 1-6, 2018.
30. Murdin, B. N., Kamal-Saadi, M., Lindsay, A., O’Reilly, E. P., Adams, A. R., Nott, G. J., Crowder, J. G., Pidgeon, C. R., Bradley, I. V., Wells, J. -P. R., Burke, T., Johnson, A. D., and Ashley, T., “Auger Recombination in Long-Wavelength Infrared InNxSb1−x Alloys”, Applied Physics Letters, Vol. 78, pp. 1568-1570, 2001.
31. Ding-Kang, S., Hao-Hsiung, L., Li-Wei, S., Tso-Yu, C., and Yang, T. R., “Band Gap Reduction in InAsN Alloys”, Japanese Journal of Applied Physics, Vol. 42, p. 375, 2003.
32. Zakutayev, A., “Design of Nitride Semiconductors for Solar Energy Conversion”, Journal of Materials Chemistry A, Vol. 4, pp. 6742-6754, 2016.
33. Ngo, C. Y., Yoon, S. F., Fan, W. J., and Chua, S. J., “Effects of Size and Shape on Electronic States of Quantum Dots”, Physical Review B, Vol. 74, p. 245331, 2006.

تحت نظارت وف ایرانی