شبیه‌سازی جت پلاسمای فشار اتمسفری هلیوم با استفاده از معادلات سیالی

نویسندگان

دانشکده فیزیک، دانشگاه صنعتی شاهرود، شاهرود

چکیده

در این پژوهش، به بررسی جت پلاسمای سرد فشار اتمسفری هلیوم پرداخته می­‌شود. جت از نوع تخلیه سد دی­الکتریک بوده و متشکل از یک تیوپ دی­الکتریک با دو الکترود حلقوی فلزی است. برای شبیه­‌سازی از معادلات پیوستگی، تکانه و پایستگی انرژی به همراه معادله پواسون جهت محاسبه پتانسیل و میدان الکتریکی و معادلات حاکم بر گاز کامل استفاده می­‌شود. نتایج نشان می­دهد که چگالی الکترونی و یونی، پتانسیل و میدان بارفضا، انرژی درونی، دما و سرعت الکترون­‌ها با زمان روندی افزایشی دارند. نیز افزایش طول پلاسما و حرکت رو به جلوی آن در امتداد محور جت، با زمان قابل مشاهده است. بنابراین انتظار می‌­رود تا با افزایش زمان، مقادیر کمیت­‌های مذکور افزایش یافته و طول شعله جت پلاسما بیشتر شود

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of a Helium Atmospheric Plasma Jet Using Fluid Equations

نویسندگان [English]

  • F. Jafarzadeh
  • S. Mehrabian
چکیده [English]

In this study, a cold atmospheric He plasma jet is investigated. The jet is of dielectric barrier discharge type, consisting of a dielectric tube with two metal ring electrodes. The continuity, momentum and energy conservation equations as well as the Poisson equation for obtaining the potential and the electric field, accompanied with the ideal gas laws, are used for the simulation. The results show that the electron and ion densities, potential and space charge field, internal energy, temperature and velocity of the electrons increase with time. Moreover, the increment of the plasma length and its forward propagation along the jet axis with time is also observed. Therefore, it is expected that the values of the mentioned quantities increase with time, which results in the increment of the plasma jet length.

کلیدواژه‌ها [English]

  • atmospheric plasma jet
  • dielectric barrier discharge
  • plasma
  • fluid equations
1. Lieberman, M. A., and Lichtenberg, A. J., Principles of Plasma Discharges and Materials Processing, Vol. 2, John Wiley & Sons, New York, 2005.
2. Kolb, J. F., Mohamed, A. A. H., Price, R. O., Swanson, R. J., Bowman, A., Chiavarini, R. L., Stacey, M., and Schoenbach, K. H., “Cold Atmospheric Pressure Air Plasma Jet for Medical Applications”, Applied Physics Letters, Vol. 92, No. 24, pp. 241-501, 2008.
3. Passaras, D. N., “Simulation of Atmospheric Pressure Plasma Jets with A Global Model”, Master Thesis, National and Kapodistrian University of Athens, Athens, 2016.
4. Reiazi, R., Akbari, M. E., Norozi, A., and Etedadialiabadi, M., “Application of Cold Atmospheric Plasma (CAP) in Cancer Therapy: A Review”, International Journal of Cancer Management, Vol. 10, No. 3: e8728, 2017.
5. Lu, X., Laroussi, M., and Puech, V., “On Atmospheric- Pressure Non-Equilibrium Plasma Jets and Plasma Bullets”, Plasma Sources Science and Technology, Vol. 21, No. 3, pp. 034005, 2012.
6. Naidis, G. V., “Modelling of Streamer Propagation in Atmospheric-Pressure Helium Plasma Jets”, Journal of Physics D: Applied Physics, Vol. 43, No. 40, pp. 402001, 2010.
7. Naidis, G. V., “Modelling of Plasma Bullet Propagation Along A Helium Jet in Ambient Air”, Journal of Physics D: Applied Physics, Vol. 44, No. 21, pp. 215203, 2011.
8. Chen, Z., Yin, Z., Chen, M., Hong, L., Xia, G., Hu, Y., Huang, Y., Liu, M., and Kudryavtsev, A.A., “Self-Consistent Fluid Modeling and Simulation on a Pulsed Microwave Atmospheric-Pressure Argon Plasma Jet”, Journal of Applied Physics, Vol. 116, No. 15, pp. 153303, 2014.
9. Norberg, S. A., Johnsen, E., and Kushner, M., “Formation of Reactive Oxygen and Nitrogen Species by Repetitive Negatively Pulsed Helium Atmospheric Pressure Plasma Jets Propagating into Humid Air”, Plasma Sources Science Technology, Vol. 24, No. 3, p. 035026, 2015.
10. Wen, Y., Fu-Cheng, L., Chao-Feng, S., and De-Zhen, W., “Two-Dimensional Numerical Study of an Atmospheric Pressure Helium Plasma Jet with Dual-Power Electrode”, Chinese Physics B, Vol. 24, No. 6, p. 065203, 2015.
11. Hagelaar, G. J. M., and Pitchford, L. C., “Solving the Boltzmann Equation to Obtain Electron Transport Coefficients and Rate Coefficients for Fluid Models”, Plasma Sources Science and Technology, Vol. 14, No. 4 pp. 722, 2005.
12. Mancinelli, B., Prevosto, L., Chamorro, J. C., Minotti, F. O., and Kelly, H., “Modelling of the Plasma–Sheath Boundary Region in Wall-Stabilized Arc Plasmas: Unipolar Discharge Properties”, Plasma Chemistry and Plasma Processing, Vol. 38, No. 1, pp. 147-176, 2018.
13. Kanzari, Z., Yousfi, M., and Hamani, A., “Modeling and Basic Data for Streamer Dynamics in N2 And O2 Discharges”, Journal of Applied Physics, Vol. 84, No. 8, pp. 4161-4169, 1998.
14. Tabares, F. L., and Junkar, I., “Cold Plasma Systems and their Application in Surface Treatments for Medicine”, Molecules, Vol. 26, No. 7, p. 1903, 2021.
15. Yousfi, M., Eichwald, O., Merbahi, N., and Jomaa, N., “Analysis of Ionization Wave Dynamics in Low-Temperature Plasma Jets From Fluid Modeling Supported by Experimental Investigations”, Plasma Sources Science and Technology, Vol. 21, No. 4, pp. 045003, 2012.
16. Vafeas, P., Papadopoulos, P. K., Vafakos, G. P., Svarnas, P., and Doschoris, M., “Modelling the Electric Field in Reactors Yielding Cold Atmospheric–Pressure Plasma Jets”, Scientific Reports, Vol. 10, p. 5694, 2020.
17. Taflove, A., and Hagness, S. C., Computational Electrodynamics: the Finite-Difference Time-Domain Method, Artech House,‌ Boston, 2005.
18. LeVeque, R. J., Mihalas, D., Dorfi, E. A., and Müller, E., Computational Methods for Astrophysical Fluid Flow, Springer, Berlin, Heidelberg, 1998.

تحت نظارت وف ایرانی