نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه اصفهان

چکیده

در پژوهش‌های منتشر شده، از پریداینامیک برای تحلیل رشد ترک در مواد ترد و شبه‌ترد، تحلیل رفتار پلاستیک و حل معادلات دیفرانسیل استفاده شده است. با توجه به چنین دستاوردهایی، دامنه‌ مسائل قابل ‌بررسی با پریداینامیک روزبه‌روز در حال گسترش است. استفاده از پریداینامیک برای تحلیل مسائل ضربه و انتشار موج از ابتدا مدنظر بوده است. به علت وجود یک طول مشخصه در روابط پریداینامیک، استفاده از آن برای حل مسائل در مقیاس‌های گوناگون مورد توجه قرار گرفته است. برخی از پژوهشگران نیز از مدل‌های چندفیزیکی پریداینامیک برای تحلیل مسائل انتقال حرارت، انتشار و بررسی رفتار سیالات استفاده کرده‌اند. تحلیل گسترش آسیب در مواد مرکب و نیز بررسی مسائل ژئومکانیک از دیگر دستاوردهای استفاده از پریداینامیک است. در کنار تمام این موارد، استفاده از پریداینامیک برای بررسی مسائل زیستی نیز در سال‌های اخیر مورد توجه واقع شده است. در این پژوهش، مقالات منتشر شده با موضوع استفاده از پریداینامیک برای حل مسائل مختلف مرور شده‌اند.

کلیدواژه‌ها

عنوان مقاله [English]

A Review of Peridynamics and its Applications; Part 2: Applications of Peridynamics to the Solution of Different Problems

نویسندگان [English]

  • Pouria Sheikhbahaei
  • Farshid Mossaiby

چکیده [English]

In the published studies, peridynamics has been used to simulate crack growth in brittle and quasi-brittle materials, simulation of plastic behaviour and solution of differential equations. With such achievements, the  extent of problems which can be solved using peridynamics is growing. Peridynamics was intended to analyze the impact and the wave propagation problems since its introduction. Due to existence of the characteristic length in peridynamics relations, it has been used to solve problems in various scales. Some researchers have also used peridynamics multiphysics models to analyze heat transfer, diffusion and fluid behavior problems. Analyzing the damage growth in composite materials and investigation of geomechanical problems are among other achievements of using peridynamics. In addition to all these cases, application of peridynamics to biological problems has also received attention in recent years. This paper reviews the studies on the applications of peridynamics in the solution of different problems.

کلیدواژه‌ها [English]

  • Peridynamics
  • Fracture mechanics
  • Nonlocal model
  • Crack growth
  • Damage
  1. Liu, N., Liu, D., and Zhou, W., “Peridynamic Modelling of Impact Damage in Three-Point Bending Beam with Offset Notch”, Applied Mathematics and Mechanics, Vol. 38, No. 1, pp. 99-110, 2017.
  2. Lee, J., Liu, W., and Hong, J. W., “Impact Fracture Analysis Enhanced by Contact of Peridynamic and Finite Element Formulations”, International Journal of Impact Engineering, Vol. 87, pp. 108-119, 2016.
  3. Wu, L. and Huang, D., “Energy Dissipation Study in Impact: From Elastic and Elastoplastic Analysis in Peridynamics”, International Journal of Solids and Structures, Vol. 234, p. 111279, 2022.
  4. Kazemi, S. R., “Plastic Deformation Due to High-Velocity Impact Using Ordinary State-Based Peridynamic Theory”, International Journal of Impact Engineering, Vol. 137, p. 103470, 2020.
  5. Silling, S. A., and Askari, E., “Peridynamic Modeling of Impact Damage”, ASME Pressure Vessels and Piping Conference, San Diego, California, Vol. 46849, pp. 197-205, 2004.
  6. Demmie, P., and Silling, S., “An Approach to Modeling Extreme Loading of Structures Using Peridynamics”, Journal of Mechanics of Materials and Structures, Vol. 2, No. 10, pp. 1921-1945, 2007.
  7. Agwai, A., Guven, I., and Madenci, E., “Peridynamic Theory for Impact Damage Prediction and Propagation in Electronic Packages Due to Drop”, 58th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, pp. 1048-1053, 2008.
  8. Agwai, A., Guven, I., and Madenci, E., “Damage Prediction for Electronic Package Drop Test Using Finite Element Method and Peridynamic Theory”, 59th Electronic Components and Technology Conference, San Diego, CA, USA, pp. 565-569, 2009.
  9. Xu, J., Askari, A., Weckner, O., and Silling, S., “Peridynamic Analysis of Impact Damage in Composite Laminates”, Journal of Aerospace Engineering, Vol. 21, No. 3, pp. 187-194, 2008.
  10. Sun, C., and Huang, Z., “Peridynamic Simulation to Impacting Damage in Composite Laminate”, Composite Structures, Vol. 138, pp. 335-341, 2016.
  11. Zhou, W., and Liu, D., “Analyzing Impact-Induced Damage and Delamination in Laminated Composite Materials with Peridynamic Modeling”, AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida, 2018.
  12. Zhou, Z., Wu, S., Mu, Z., Wang, W., and Jiang, N., “Feasibility Exploration on Simulation Study Based on Peridynamic for the Bio-Inspired Nacre Nano Composite Against the Impact”, International Conference on Aerospace System Science and Engineering, Singapore, pp. 419-434, 2020.
  13. Bobaru, F., Ha, Y. D., and Hu, W., “Damage Progression from Impact in Layered Glass Modeled with Peridynamics”, Central European Journal of Engineering, Vol. 2, No. 4, pp. 551-561, 2012.
  14. Jafaraghaei, Y., Yu, T., and Bui, T. Q., “Peridynamics Simulation of Impact Failure in Glass Plates”, Theoretical and Applied Fracture Mechanics, p. 103424, 2022.
  15. Ha, Y. D., “An Extended Ghost Interlayer Model in Peridynamic Theory for High-Velocity Impact Fracture of Laminated Glass Structures”, Computers & Mathematics with Applications, Vol. 80, No. 5, pp. 744-761, 2020.
  16. Hu, W., Wang, Y., Yu, J., Yen, C. F., and Bobaru, F., “Impact Damage on a Thin Glass Plate with a Thin Polycarbonate Backing”, International Journal of Impact Engineering, Vol. 62, pp. 152-165, 2013.
  17. Zhou, X., Du, E., and Wang, Y., “Thermo-Hydro-Chemo-Mechanical Coupling Peridynamic Model of Fractured Rock Mass and Its Application in Geothermal Extraction”, Computers and Geotechnics, Vol. 148, p. 104837, 2022.
  18. Gu, X., and Zhang, Q., “A Modified Conjugated Bond-Based Peridynamic Analysis for Impact Failure of Concrete Gravity Dam”, Meccanica, Vol. 55, No. 3, pp. 547-566, 2020.
  19. Wu, L. and Huang, D., “Peridynamic Modeling and Simulations on Concrete Dynamic Failure and Penetration Subjected to Impact Loadings”, Engineering Fracture Mechanics, Vol. 259, p. 108135, 2022.
  20. Yang, S., Gu, X., Xia, X., and Zhang, Q., “Explosion Damage Analysis of Concrete Structure with Bond-Associated Non-Ordinary State-Based Peridynamics”, Engineering with Computers, 2022, https://doi.org/10.1007/s00366-022-01620-x.
  21. Zheng, J., Shen, F., Gu, X., and Zhang, Q., “Simulating Failure Behavior of Reinforced Concrete T-Beam under Impact Loading by Using Peridynamics”, International Journal of Impact Engineering, Vol. 165, p. 104231, 2022.
  22. Oterkus, E., Guven, I., and Madenci, E., “Impact Damage Assessment by Using Peridynamic Theory”, Central European Journal of Engineering, Vol. 2, No. 4, pp. 523-531, 2012.
  23. Diehl, P., and Schweitzer, M. A., “Simulation of Wave Propagation and Impact Damage in Brittle Materials Using Peridynamics”, in Recent Trends in Computational Eece2014, Springer, pp. 251-265, 2015.
  24. Demmie, P. and Ostoja-Starzewski, M., “Local and Nonlocal Material Models, Spatial Randomness, and Impact Loading”, Archive of Applied Mechanics, Vol. 86, No. 1, pp. 39-58, 2016.
  25. Zhang, G., Gazonas, G. A., and Bobaru, F., “Supershear Damage Propagation and Sub-Rayleigh Crack Growth from Edge-on Impact: A Peridynamic Analysis”, International Journal of Impact Engineering, Vol. 113, pp. 73-87, 2018.
  26. Akbari, M., and Kazemi, S., “Peridynamic Analysis of Cracked Beam under Impact”, Journal of Mechanics, Vol. 36, No. 4, pp. 451-463, 2020.
  27. Anicode, V., Diyaroglu, C., and Madenci, E., “Peridynamic Modeling of Damage Due to Multiple Sand Particle Impacts in the Presence of Contact and Friction”, AIAA Scitech 2020 Forum, Orlando, FL, p. 0968, 2020.
  28. Jin, D., and Liu, W., “A Peridynamic Modeling Approach of Solid State Impact Bonding and Simulation of Interface Morphologies”, Applied Mathematical Modelling, Vol. 92, pp. 466-485, 2021.
  29. Isiet, M., Mišković, I., and Mišković, S., “Review of Peridynamic Modelling of Material Failure and Damage Due to Impact”, International Journal of Impact Engineering, Vol. 147, p. 103740, 2021.
  30. Weckner, O., and Abeyaratne, R., “The Effect of Long-Range Forces on the Dynamics of a Bar”, Journal of the Mechanics and Physics of Solids, Vol. 53, No. 3, pp. 705-728, 2005.
  31. Zingales, M., “Wave Propagation in 1D Elastic Solids in Presence of Long-Range Central Interactions”, Journal of Sound and Vibration, Vol. 330, No. 16, pp. 3973-3989, 2011.
  32. Mikata, Y., “Analytical Solutions of Peristatic and Peridynamic Problems for a 1D Infinite Rod”, International Journal of Solids and Structures, Vol. 49, No. 21, pp. 2887-2897, 2012.
  33. Butt, S. N., Timothy, J. J., and Meschke, G., “Wave Dispersion and Propagation in State-Based Peridynamics”, Computational Mechanics, Vol. 60, No. 5, pp. 725-738, 2017.
  34. Bažant, Z. P., Luo, W., Chau, V. T., and Bessa, M. A., “Wave Dispersion and Basic Concepts of Peridynamics Compared to Classical Nonlocal Damage Models”, Journal of Applied Mechanics, Vol. 83, No. 11, p. 111004, 2016.
  35. Kulkarni, S., and Tabarraei, A., “An Analytical Study of Wave Propagation in a Peridynamic Bar with Nonuniform Discretization”, Engineering Fracture Mechanics, Vol. 190, pp. 347-366, 2018.
  36. Dayal, K., “Leading-Order Nonlocal Kinetic Energy in Peridynamics for Consistent Energetics and Wave Dispersion”, Journal of the Mechanics and Physics of Solids, Vol. 105, pp. 235-253, 2017.
  37. Mutnuri, V., and Gopalakrishnan, S., “A Comparative Study of Wave Dispersion between Discrete and Continuum Linear Bond-Based Peridynamics Systems: 1D Framework”, Mechanics Research Communications, Vol. 94, pp. 40-44, 2018.
  38. Wang, B., Oterkus, S., and Oterkus, E., “Closed-Form Dispersion Relationships in Bond-Based Peridynamics”, Procedia Structural Integrity, Vol. 28, pp. 482-490, 2020.
  39. Wildman, R. A., “Discrete Micromodulus Functions for Reducing Wave Dispersion in Linearized Peridynamics”, Journal of Peridynamics and Nonlocal Modeling, Vol. 1, No. 1, pp. 56-73, 2019.
  40. Nishawala, V. V., Ostoja-Starzewski, M., Leamy, M. J., and Demmie, P. N., “Simulation of Elastic Wave Propagation Using Cellular Automata and Peridynamics, and Comparison with Experiments”, Wave Motion, Vol. 60, pp. 73-83, 2016.
  41. Herrmann, M., and Matthies, K., “Solitary Waves in Atomic Chains and Peridynamical Media”, Solitary Waves in Atomic Chains and Peridynamical Media, Vol. 1, No. 2, pp. 281-308, 2019.
  42. Butt, S. N., and Meschke, G., “Wave Dispersion and Propagation in a Linear Peridynamic Solid”, PAMM, Vol. 17, No. 1, pp. 409-410, 2017.
  43. Mutnuri, V., and Gopalakrishnan, S., “A Re-Examination of Wave Dispersion and on Equivalent Spatial Gradient of the Integral in Bond-Based Peridynamics”, Journal of Peridynamics and Nonlocal Modeling, Vol. 2, No. 3, pp. 243-277, 2020.
  44. Chan, W., and Chen, H., “Peridynamic Bond‐Associated Correspondence Model: Wave Dispersion Property”, International Journal for Numerical Methods in Engineering, Vol. 122, No. 18, pp. 4848-4863, 2021.
  45. Alebrahim, R., Packo, P., Zaccariotto, M., and Galvanetto, U., “Wave Propagation Improvement in Two-Dimensional Bond-Based Peridynamics Model”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, No. 14, pp. 2542-2553, 2021.
  46. Li, S., Jin, Y., Lu, H., Sun, P., Huang, X., and Chen, Z., “Wave Dispersion and Quantitative Accuracy Analysis of Bond-Based Peridynamic Models with Different Attenuation Functions”, Computational Materials Science, Vol. 197, p. 110667, 2021.
  47. Alebrahim, R., Packo, P., Zaccariotto, M., and Galvanetto, U., “Improved Wave Dispersion Properties in 1D and 2D Bond-Based Peridynamic Media”, Computational Particle Mechanics, Vol. 9, No. 4, pp. 597-614, 2022.
  48. Ma, X., Feng, Q., Liu, L., Xu, J., Zhang, P., and Chen, H., “A Non-Local Method in Peridynamic Theory for Simulating Elastic Wave Propagation in Solids”, Applied Mathematical Modelling, Vol. 103, pp. 360-375, 2022.
  49. Wildman, R. A., and Gazonas, G. A., “A Finite Difference-Augmented Peridynamics Method for Reducing Wave Dispersion”, International Journal of Fracture, Vol. 190, No. 1, pp. 39-52, 2014.
  50. Rahman, R., and Foster, J. T., “Onto Resolving Spurious Wave Reflection Problem with Changing Nonlocality among Various Length Scales”, Communications in Nonlinear Science and Numerical Simulation, Vol. 34, pp. 86-122, 2016.
  51. Giannakeas, I. N., Papathanasiou, T. K., and Bahai, H., “Wave Reflection and Cut‐Off Frequencies in Coupled FE‐Peridynamic Grids”, International Journal for Numerical Methods in Engineering, Vol. 120, No. 1, pp. 29-55, 2019.
  52. Kulkarni, S. S., Tabarraei, A., and Wang, X., “Study of Spurious Wave Reflection at the Interface of Peridynamics and Finite Element Regions”, ASME International Mechanical Engineering Congress and Exposition, Vol. 52149, p. V009T12A054, 2018.
  53. Silling, S. A., “Solitary Waves in a Peridynamic Elastic Solid”, Journal of the Mechanics and Physics of Solids, Vol. 96, pp. 121-132, 2016.
  54. Pego, R. L., and Van, T. S., “Existence of Solitary Waves in One Dimensional Peridynamics”, Journal of Elasticity, Vol. 136, No. 2, pp. 207-236, 2019.
  55. Martowicz, A., Staszewski, W., Ruzzene, M., and Uhl, T., “Peridynamics as an Analysis Tool for Wave Propagation in Graphene Nanoribbons”, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Vol. 9435, pp. 148-155, 2015.
  56. Jia, T., and Liu, D., “Simulating Wave Propagation in SHPB with Peridynamics”, in Dynamic Behavior of Materials, Volume 1, Springer, pp. 195-200, 2014.
  57. Alebrahim, R., “Peridynamic Modeling of Lamb Wave Propagation in Bimaterial Plates”, Composite Structures, Vol. 214, pp. 12-22, 2019.
  58. Silling, S. A., and Bobaru, F., “Peridynamic Modeling of Membranes and Fibers”, International Journal of Non-Linear Mechanics, Vol. 40, No. 2-3, pp. 395-409, 2005.
  59. Bobaru, F., Silling, S. A., and Jiang, H., “Peridynamic Fracture and Damage Modeling of Membranes and Nanofiber Networks”, Proceedings of the XI International Conference on Fracture, Turin, Italy, Vol. 5748, pp. 1-6, 2005.
  60. O’Grady, J., and Foster, J., “Peridynamic Beams: A Non-Ordinary, State-Based Model”, International Journal of Solids and Structures, Vol. 51, No. 18, pp. 3177-3183, 2014.
  61. O’Grady, J., and Foster, J., “Peridynamic Plates and Flat Shells: A Non-Ordinary, State-Based Model”, International Journal of Solids and Structures, Vol. 51, No. 25-26, pp. 4572-4579, 2014.
  62. Chowdhury, S. R., Rahaman, M. M., Roy, D., and Sundaram, N., “A Micropolar Peridynamic Theory in Linear Elasticity”, International Journal of Solids and Structures, Vol. 59, pp. 171-182, 2015.
  63. Oterkus, S., and Madenci, E., “Peridynamics for Antiplane Shear and Torsional Deformations”, Journal of Mechanics of Materials and Structures, 10, No. 2, pp. 167-193, 2015.
  64. Diyaroglu, C., Oterkus, E., Oterkus, S., and Madenci, E., “Peridynamics for Bending of Beams and Plates with Transverse Shear Deformation”, International Journal of Solids and Structures, Vol. 69, pp. 152-168, 2015.
  65. O’Grady, J. and Foster, J. T., “Peridynamic Beams and Plates: A Non-Ordinary State-Based Model”, ASME International Mechanical Engineering Congress and Exposition, Montreal, Canada, Vol. 46421, p. V001T01A059, 2014.
  66. Diyaroglu, C., Oterkus, E., and Oterkus, S., “An Euler–Bernoulli Beam Formulation in an Ordinary State-Based Peridynamic Framework”, Mathematics and Mechanics of Solids, Vol. 24, No. 2, pp. 361-376, 2019.
  67. Yang, Z., Oterkus, E., Nguyen, C. T., and Oterkus, S., “Implementation of Peridynamic Beam and Plate Formulations in Finite Element Framework”, Continuum Mechanics and Thermodynamics, Vol. 31, No. 1, pp. 301-315, 2019.
  68. Nguyen, C. T., and Oterkus, S., “Peridynamics Formulation for Beam Structures to Predict Damage in Offshore Structures”, Ocean Engineering, Vol. 173, pp. 244-267, 2019.
  69. Jafari, A., Ezzati, M., and Atai, A. A., “Static and Free Vibration Analysis of Timoshenko Beam Based on Combined Peridynamic-Classical Theory Besides FEM Formulation”, Computers & Structures, Vol. 213, pp. 72-81, 2019.
  70. Yang, Z., Oterkus, S., and Oterkus, E., “Peridynamic Formulation for Timoshenko Beam”, Procedia Structural Integrity, Vol. 28, pp. 464-471, 2020.
  71. Yang, Z., Oterkus, E., and Oterkus, S., “Peridynamic Higher-Order Beam Formulation”, Journal of Peridynamics and Nonlocal Modeling, Vol. 3, No. 1, pp. 67-83, 2021.
  72. Chen, J., “Peridynamics Beam Equation”, in Nonlocal Euler–Bernoulli Beam Theories, Springer, pp. 9-21, 2021.
  73. Shen, G., Xia, Y., Hu, P., and Zheng, G., “Construction of Peridynamic Beam and Shell Models on the Basis of the Micro-Beam Bond Obtained Via Interpolation Method”, European Journal of Mechanics-A/Solids, Vol. 86, p. 104174, 2021.
  74. Yang, Z., Oterkus, E., and Oterkus, S., “Analysis of Functionally Graded Timoshenko Beams by Using Peridynamics”, Journal of Peridynamics and Nonlocal Modeling, Vol. 3, No. 2, pp. 148-166, 2021.
  75. Liu, S., Fang, G., Liang, J., Fu, M., Wang, B., and Yan, X., “Study of Three-Dimensional Euler-Bernoulli Beam Structures Using Element-Based Peridynamic Model”, European Journal of Mechanics-A/Solids, Vol. 86, p. 104186, 2021.
  76. Nguyen, C. T., and Oterkus, S., “Peridynamics for Geometrically Nonlinear Analysis of Three-Dimensional Beam Structures”, Engineering Analysis with Boundary Elements, Vol. 126, pp. 68-92, 2021.
  77. Yang, Z., Oterkus, E., and Oterkus, S., “Beam and Plate Models in Peridynamics”, in Peridynamic Modeling, Numerical Techniques, and Applications, Elsevier, pp. 97-112, 2021.
  78. Shen, G., Xia, Y., Li, W., Zheng, G., and Hu, P., “Modeling of Peridynamic Beams and Shells with Transverse Shear Effect Via Interpolation Method”, Computer Methods in Applied Mechanics and Engineering, Vol. 378, p. 113716, 2021.
  79. Zheng, G., Li, L., Han, F., Xia, Y., Shen, G., and Hu, P., “Coupled Peridynamic Model for Geometrically Nonlinear Deformation and Fracture Analysis of Slender Beam Structures”, International Journal for Numerical Methods in Engineering, 2022, https://doi.org/10.1002/nme.6984.
  80. Madenci, E., Roy, P., and Behera, D., “Peridynamic Modeling of Finite Deformation of Beams”, in Advances in Peridynamics, Springer, pp. 243-282, 2022.
  81. Chowdhury, S. R., Roy, P., Roy, D., and Reddy, J., “A Peridynamic Theory for Linear Elastic Shells”, International Journal of Solids and Structures, Vol. 84, pp. 110-132, 2016.
  82. Zhang, Q., Li, S., Zhang, A. M., Peng, Y., and Yan, J., “A Peridynamic Reissner‐Mindlin Shell Theory”, International Journal for Numerical Methods in Engineering, Vol. 122, No. 1, pp. 122-147, 2021.
  83. Oterkus, E., Madenci, E., and Oterkus, S., “Peridynamic Shell Membrane Formulation”, Procedia Structural Integrity, Vol. 28, pp. 411-417, 2020.
  84. Dai, M. J., Tanaka, S., Guan, P. C., Oterkus, S., and Oterkus, E., “Ordinary State-Based Peridynamic Shell Model with Arbitrary Horizon Domains for Surface Effect Correction”, Theoretical and Applied Fracture Mechanics, Vol. 115, p. 103068, 2021.
  85. Dai, M. J., Tanaka, S., Bui, T. Q., Oterkus, S., and Oterkus, E., “Fracture Parameter Analysis of Flat Shells under out-of-Plane Loading Using Ordinary State-Based Peridynamics”, Engineering Fracture Mechanics, Vol. 244, p. 107560, 2021.
  86. Dai, M. J., Tanaka, S., Oterkus, S., and Oterkus, E., “Mixed-Mode Stress Intensity Factors Evaluation of Flat Shells under in-Plane Loading Employing Ordinary State-Based Peridynamics”, Theoretical and Applied Fracture Mechanics, Vol. 112, p. 102841, 2021.
  87. Xia, Y., Wang, H., Zheng, G., Shen, G., and Hu, P., “Discontinuous Galerkin Isogeometric Analysis with Peridynamic Model for Crack Simulation of Shell Structure”, Computer Methods in Applied Mechanics and Engineering, Vol. 398, p. 115193, 2022.
  88. Behzadinasab, M., Alaydin, M., Trask, N., and Bazilevs, Y., “A General-Purpose, Inelastic, Rotation-Free Kirchhoff–Love Shell Formulation for Peridynamics”, Computer Methods in Applied Mechanics and Engineering, Vol. 389, p. 114422, 2022.
  89. Zheng, G., Yan, Z., Xia, Y., Hu, P., and Shen, G., “Peridynamic Shell Model Based on Micro-Beam Bond”, CMES-Computer Modeling in Engineering & Sciences, 2022, https://doi.org/10.32604/cmes.2022.021415.
  90. Taylor, M., Gözen, I., Patel, S., Jesorka, A., and Bertoldi, K., “Peridynamic Modeling of Ruptures in Biomembranes”, PloS one, Vol. 11, No. 11, p. e0165947, 2016.
  91. Bang, D., and Madenci, E., “Peridynamic Modeling of Hyperelastic Membrane Deformation”, Journal of Engineering Materials and Technology, Vol. 139, No. 3, p. 031007, 2017.
  92. Li, H., Zheng, Y., Zhang, Y., Ye, H., and Zhang, H., “Large Deformation and Wrinkling Analyses of Bimodular Structures and Membranes Based on a Peridynamic Computational Framework”, Acta Mechanica Sinica, Vol. 35, No. 6, pp. 1226-1240, 2019.
  93. Taştan, A., Yolum, U., Güler, M. A., Zaccariotto, M., and Galvanetto, U., “A 2D Peridynamic Model for Failure Analysis of Orthotropic Thin Plates Due to Bending”, Procedia Structural Integrity, Vol. 2, pp. 261-268, 2016.
  94. Yang, Z., Vazic, B., Diyaroglu, C., Oterkus, E., and Oterkus, S., “A Kirchhoff Plate Formulation in a State-Based Peridynamic Framework”, Mathematics and Mechanics of Solids, Vol. 25, No. 3, pp. 727-738, 2020.
  95. Yolum, U., and Güler, M. A., “On the Peridynamic Formulation for an Orthotropic Mindlin Plate under Bending”, Mathematics and Mechanics of Solids, Vol. 25, No. 2, pp. 263-287, 2020.
  96. Yang, Z., Oterkus, E., and Oterkus, S., “Peridynamic Formulation for Higher-Order Plate Theory”, Journal of Peridynamics and Nonlocal Modeling, Vol. 3, No. 3, pp. 185-210, 2021.
  97. Nguyen, C. T. and Oterkus, S., “Ordinary State-Based Peridynamics for Geometrically Nonlinear Analysis of Plates”, Theoretical and Applied Fracture Mechanics, Vol. 112, p. 102877, 2021.
  98. Naumenko, K. and Eremeyev, V. A., “A Non-Linear Direct Peridynamics Plate Theory”, Composite Structures, Vol. 279, p. 114728, 2022.
  99. Shafiei, Z., Sarrami, S., Azhari, M., Galvanetto, U., and Zaccariotto, M., “A Coupled Peridynamic and Finite Strip Method for Analysis of in-Plane Behaviors of Plates with Discontinuities”, Engineering with Computers, 2022, https://doi.org/10.1007/s00366-022-01665-y.
  100. Liu, F., Hu, Y. M., Feng, G. Q., Zhao, W. D., And Ren, H. L., “Study on Elastoplastic Analysis of Metal Plate Based on Peridynamic Differential Operator”, Thin-Walled Structures, Vol. 180, p. 109836, 2022.
  101. Askari, E., Bobaru, F., Lehoucq, R., Parks, M., Silling, S., and Weckner, O., “Peridynamics for Multiscale Materials Modeling”, Journal of Physics: Conference Series, Washington, USA, Vol. 125, No. 1, p. 012078, 2008.
  102. Bobaru, F., “Peridynamics and Multiscale Modeling”, International Journal for Multiscale Computational Engineering, Vol. 9, No. 6, pp. vii-ix, 2011.
  103. Bobaru, F., Yang, M., Alves, L. F., Silling, S. A., Askari, E., and Xu, J., “Convergence, Adaptive Refinement, and Scaling in 1D Peridynamics”, International Journal for Numerical Methods in Engineering, Vol. 77, No. 6, pp. 852-877, 2009.
  104. Bobaru, F. and Ha, Y. D., “Adaptive Refinement and Multiscale Modeling in 2D Peridynamics”, International Journal for Multiscale Computational Engineering, Vol. 9, No. 6, pp. 635-660, 2011.
  105. Seleson, P. D., “Peridynamic Multiscale Models for the Mechanics of Materials: Constitutive Relations, Upscaling from Atomistic Systems, and Interface Problems”, Ph.D. Thesis, The Florida State University, Tallahassee, Florida, 2010.
  106. Alali, B., and Lipton, R., “Multiscale Dynamics of Heterogeneous Media in the Peridynamic Formulation”, Journal of Elasticity, Vol. 106, No. 1, pp. 71-103, 2012.
  107. Yaghoobi, A., Chorzepa, M. G., Kim, S. S., and Durham, S. A., “Mesoscale Fracture Analysis of Multiphase Cementitious Composites Using Peridynamics”, Materials, Vol. 10, No. 2, p. 162, 2017.
  108. Zhao, J., Chen, Z., Mehrmashhadi, J., and Bobaru, F., “A Stochastic Multiscale Peridynamic Model for Corrosion-Induced Fracture in Reinforced Concrete”, Engineering Fracture Mechanics, Vol. 229, p. 106969, 2020.
  109. Du, Q., Lipton, R., and Mengesha, T., “Multiscale Analysis of Linear Evolution Equations with Applications to Nonlocal Models for Heterogeneous Media”, ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 50, No. 5, pp. 1425-1455, 2016.
  110. Ahadi, A., and Krochmal, J., “Anisotropic Peridynamic Model—Formulation and Implementation”, AIMS Materials Science, Vol. 5, No. 4, pp. 742-755, 2018.
  111. Nayak, S., Ravinder, R., Krishnan, N. A., and Das, S., “A Peridynamics-Based Micromechanical Modeling Approach for Random Heterogeneous Structural Materials”, Materials, Vol. 13, No. 6, p. 1298, 2020.
  112. Javili, A., Morasata, R., Oterkus, E., and Oterkus, S., “Peridynamics Review”, Mathematics and Mechanics of Solids, Vol. 24, No. 11, pp. 3714-3739, 2019.
  113. Celik, E., Guven, I., and Madenci, E., “Simulations of Nanowire Bend Tests for Extracting Mechanical Properties”, Theoretical and Applied Fracture Mechanics, Vol. 55, No. 3, pp. 185-191, 2011.
  114. Rahman, R., and Foster, J., “Bridging the Length Scales through Nonlocal Hierarchical Multiscale Modeling Scheme”, Computational Materials Science, Vol. 92, pp. 401-415, 2014.
  115. Sadat, M. R., Muralidharan, K., Frantziskonis, G. N., and Zhang, L., “From Atomic-Scale to Mesoscale: A Characterization of Geopolymer Composites Using Molecular Dynamics and Peridynamics Simulations”, Computational Materials Science, Vol. 186, p. 110038, 2021.
  116. Tong, Q., and Li, S., “Multiscale Coupling of Molecular Dynamics and Peridynamics”, Journal of the Mechanics and Physics of Solids, Vol. 95, pp. 169-187, 2016.
  117. Rahman, R., Foster, J. T., and Haque, A., “A Multiscale Modeling Scheme Based on Peridynamic Theory”, International Journal for Multiscale Computational Engineering, Vol. 12, No. 3, 2014.
  118. Ballarini, R., Diana, V., Biolzi, L., and Casolo, S., “Bond-Based Peridynamic Modelling of Singular and Nonsingular Crack-Tip Fields”, Meccanica, Vol. 53, No. 14, pp. 3495-3515, 2018.
  119. Ghaffari, M. A., Gong, Y., Attarian, S., and Xiao, S., “Peridynamics with Corrected Boundary Conditions and Its Implementation in Multiscale Modeling of Rolling Contact Fatigue”, Journal of Multiscale Modelling, Vol. 10, No. 01, p. 1841003, 2019.
  120. Mengesha, T., and Du, Q., “Multiscale Analysis of Linearized Peridynamics”, Communications in Mathematical Sciences, Vol. 13, No. 5, pp. 1193-1218, 2015.
  121. Xu, F., Gunzburger, M., Burkardt, J., and Du, Q., “A Multiscale Implementation Based on Adaptive Mesh Refinement for the Nonlocal Peridynamics Model in One Dimension”, Multiscale Modeling & Simulation, Vol. 14, No. 1, pp. 398-429, 2016.
  122. Gu, X., Zhang, Q., and Xia, X., “Voronoi‐Based Peridynamics and Cracking Analysis with Adaptive Refinement”, International Journal for Numerical Methods in Engineering, Vol. 112, No. 13, pp. 2087-2109, 2017.
  123. Zaccariotto, M., Sarego, G., Dipasquale, D., Shojaei, A., Bazazzadeh, S., Mudric, T., Duzzi, M., and Galvanetto, U., “Discontinuous Mechanical Problems Studied with a Peridynamics-Based Approach”, Aerotecnica Missili & Spazio, Vol. 96, No. 1, pp. 44-55, 2017.
  124. Birner, M., Diehl, P., Lipton, R., and Schweitzer, M. A., “A Fracture Multiscale Model for Peridynamic Enrichment within the Partition of Unity Method: Part I”, Computational Engineering, Finance, and Science 2021, https://doi.org/10.48550/arXiv.2108.02336.
  125. Gerstle, W., Silling, S., Read, D., Tewary, V., and Lehoucq, R., “Peridynamic Simulation of Electromigration”, Comput Mater Continua, Vol. 8, No. 2, pp. 75-92, 2008.
  126. Kilic, B., and Madenci, E., “Peridynamic Theory for Thermomechanical Analysis”, IEEE Transactions on Advanced Packaging, Vol. 33, No. 1, pp. 97-105, 2009.
  127. Bobaru, F., and Duangpanya, M., “The Peridynamic Formulation for Transient Heat Conduction”, International Journal of Heat and Mass Transfer, Vol. 53, No. 19-20, pp. 4047-4059, 2010.
  128. Bobaru, F., and Duangpanya, M., “A Peridynamic Formulation for Transient Heat Conduction in Bodies with Evolving Discontinuities”, Journal of Computational Physics, Vol. 231, No. 7, pp. 2764-2785, 2012.
  129. Agwai, A., Guven, I., and Madenci, E., “Failure Prediction in Fully Coupled Thermal and Deformational Fields with Peridynamics”, IEEE 62nd Electronic Components and Technology Conference, San Diego, California, USA, pp. 1223-1232, 2012.
  130. Beckmann, R., Mella, R., and Wenman, M., “Mesh and Timestep Sensitivity of Fracture from Thermal Strains Using Peridynamics Implemented in Abaqus”, Computer Methods in Applied Mechanics and Engineering, Vol. 263, pp. 71-80, 2013.
  131. Oterkus, S., Madenci, E., and Agwai, A., “Peridynamic Thermal Diffusion”, Journal of Computational Physics, Vol. 265, pp. 71-96, 2014.
  132. Gu, X., Zhang, Q., and Madenci, E., “Refined Bond-Based Peridynamics for Thermal Diffusion”, Engineering Computations, Vol. 36, No. 8, pp. 2557-2587, 2019.
  133. Oterkus, S., Madenci, E., and Agwai, A., “Fully Coupled Peridynamic Thermomechanics”, Journal of the Mechanics and Physics of Solids, Vol. 64, pp. 1-23, 2014.
  134. Gao, Y. and Oterkus, S., “Ordinary State-Based Peridynamic Modelling for Fully Coupled Thermoelastic Problems”, Continuum Mechanics and Thermodynamics, Vol. 31, No. 4, pp. 907-937, 2019.
  135. Amani, J., Oterkus, E., Areias, P., Zi, G., Nguyen-Thoi, T., and Rabczuk, T., “A Non-Ordinary State-Based Peridynamics Formulation for Thermoplastic Fracture”, International Journal of Impact Engineering, Vol. 87, pp. 83-94, 2016.
  136. Gao, Y., and Oterkus, S., “Fully Coupled Thermomechanical Analysis of Laminated Composites by Using Ordinary State Based Peridynamic Theory”, Composite Structures, Vol. 207, pp. 397-424, 2019.
  137. Shou, Y., and Zhou, X., “A Coupled Thermomechanical Nonordinary State‐Based Peridynamics for Thermally Induced Cracking of Rocks”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 43, No. 2, pp. 371-386, 2020.
  138. Wang, H., Xu, Y., and Huang, D., “A Non-Ordinary State-Based Peridynamic Formulation for Thermo-Visco-Plastic Deformation and Impact Fracture”, International Journal of Mechanical Sciences, Vol. 159, pp. 336-344, 2019.
  139. Diyaroglu, C., Oterkus, S., Oterkus, E., Madenci, E., Han, S., and Hwang, Y., “Peridynamic Wetness Approach for Moisture Concentration Analysis in Electronic Packages”, Microelectronics Reliability, Vol. 70, pp. 103-111, 2017.
  140. Ladányi, G., and Gonda, V., “Peridynamic Modelling of Crack Initiation and Propagation in Thermo-Mechanically Loaded Electronic Devices”, 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Hannover, Germany, pp. 1-5, 2018.
  141. Wildman, R., and Gazonas, G., “A Dynamic Electro-Thermo-Mechanical Model of Dielectric Breakdown in Solids Using Peridynamics”, Journal of Mechanics of Materials and Structures, Vol. 10, No. 5, pp. 613-630, 2015.
  142. Li, Z., Huang, D., Xu, Y., and Yan, K., “Nonlocal Steady-State Thermoelastic Analysis of Functionally Graded Materials by Using Peridynamic Differential Operator”, Applied Mathematical Modelling, Vol. 93, pp. 294-313, 2021.
  143. He, D., Huang, D., and Jiang, D., “Modeling and Studies of Fracture in Functionally Graded Materials under Thermal Shock Loading Using Peridynamics”, Theoretical and Applied Fracture Mechanics, Vol. 111, p. 102852, 2021.
  144. Liao, Y., Liu, L., Liu, Q., Lai, X., Assefa, M., and Liu, J., “Peridynamic Simulation of Transient Heat Conduction Problems in Functionally Gradient Materials with Cracks”, Journal of Thermal Stresses, Vol. 40, No. 12, pp. 1484-1501, 2017.
  145. Wang, Y., Zhou, X., and Kou, M., “An Improved Coupled Thermo-Mechanic Bond-Based Peridynamic Model for Cracking Behaviors in Brittle Solids Subjected to Thermal Shocks”, European Journal of Mechanics-A/Solids, Vol. 73, pp. 282-305, 2019.
  146. Giannakeas, I. N., Papathanasiou, T. K., and Bahai, H., “Simulation of Thermal Shock Cracking in Ceramics Using Bond-Based Peridynamics and FEM”, Journal of the European Ceramic Society, Vol. 38, No. 8, pp. 3037-3048, 2018.
  147. D’Antuono, P., and Morandini, M., “Thermal Shock Response Via Weakly Coupled Peridynamic Thermo-Mechanics”, International Journal of Solids and Structures, Vol. 129, pp. 74-89, 2017.
  148. Wang, Y., Zhou, X., and Kou, M., “A Coupled Thermo-Mechanical Bond-Based Peridynamics for Simulating Thermal Cracking in Rocks”, International Journal of Fracture, Vol. 211, No. 1, pp. 13-42, 2018.
  149. Wang, Y., and Zhou, X., “Peridynamic Simulation of Thermal Failure Behaviors in Rocks Subjected to Heating from Boreholes”, International Journal of Rock Mechanics and Mining Sciences, Vol. 117, pp. 31-48, 2019.
  150. Mu, D., Li, Z., Tang, A., Liu, Q., and Huang, D., “A Coupled Thermo-Mechanical Bond-Based Smoothed Particle Dynamics Model for Simulating Thermal Cracking in Rocks”, Engineering Fracture Mechanics, Vol. 265, p. 108364, 2022.
  151. Bazazzadeh, S., Mossaiby, F., and Shojaei, A., “An Adaptive Thermo-Mechanical Peridynamic Model for Fracture Analysis in Ceramics”, Engineering Fracture Mechanics, Vol. 223, p. 106708, 2020.
  152. Bazazzadeh, S., Morandini, M., Zaccariotto, M., and Galvanetto, U., “Simulation of Chemo-Thermo-Mechanical Problems in Cement-Based Materials with Peridynamics”, Meccanica, Vol. 56, No. 9, pp. 2357-2379, 2021.
  153. Chen, W., Gu, X., Zhang, Q., and Xia, X., “A Refined Thermo-Mechanical Fully Coupled Peridynamics with Application to Concrete Cracking”, Engineering Fracture Mechanics, Vol. 242, p. 107463, 2021.
  154. Gao, Y., and Oterkus, S., “Coupled Thermo-Fluid-Mechanical Peridynamic Model for Analysing Composite under Fire Scenarios”, Composite Structures, Vol. 255, p. 113006, 2021.
  155. Mikata, Y., “Peridynamics for Heat Conduction”, Journal of Heat Transfer, Vol. 142, No. 8, p. 081402, 2020, 10.1115/1.4047058.
  156. Nguyen, C. T., and Oterkus, S., “Peridynamics for the Thermomechanical Behavior of Shell Structures”, Engineering Fracture Mechanics, Vol. 219, p. 106623, 2019.
  157. Hu, Y., Chen, H., Spencer, B. W., and Madenci, E., “Thermomechanical Peridynamic Analysis with Irregular Non-Uniform Domain Discretization”, Engineering Fracture Mechanics, Vol. 197, pp. 92-113, 2018.
  158. Zhao, T., and Shen, Y., “An Embedded Discontinuity Peridynamic Model for Nonlocal Heat Conduction with Interfacial Thermal Resistance”, International Journal of Heat and Mass Transfer, Vol. 175, p. 121195, 2021.
  159. Pathrikar, A., Tiwari, S. B., Arayil, P., and Roy, D., “Thermomechanics of Damage in Brittle Solids: A Peridynamics Model”, Theoretical and Applied Fracture Mechanics, Vol. 112, p. 102880, 2021.
  160. Chen, Z., Peng, X., Jafarzadeh, S., and Bobaru, F., “Analytical Solutions of Peridynamic Equations. Part I: Transient Heat Diffusion”, Journal of Peridynamics and Nonlocal Modeling, Vol. 4, pp. 303–335, 2022.
  161. Madenci, E., Roy, P., and Behera, D., “Peridynamic Modeling of Thermoelastic Deformation”, in Advances in Peridynamics, Springer, pp. 173-184, 2022.
  162. Wang, B., Oterkus, S., and Oterkus, E., “Thermomechanical Phase Change Peridynamic Model for Welding Analysis”, Engineering Analysis with Boundary Elements, Vol. 140, pp. 371-385, 2022.
  163. Zhang, H., and Zhang, X., “Peridynamic Analysis of Materials Interface Fracture with Thermal Effect”, Theoretical and Applied Fracture Mechanics, p. 103420, 2022.
  164. Diyaroglu, C., Oterkus, S., Oterkus, E., and Madenci, E., “Peridynamic Modeling of Diffusion by Using Finite-Element Analysis”, IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 11, pp. 1823-1831, 2017.
  165. Zeleke, M. A., and Ageze, M. B., “A Review of Peridynamics (PD) Theory of Diffusion Based Problems”, Journal of Engineering, 2021, https://doi.org/10.1155/2021/7782326.
  166. Shojaei, A., Hermann, A., Seleson, P., and Cyron, C. J., “Dirichlet Absorbing Boundary Conditions for Classical and Peridynamic Diffusion-Type Models”, Computational Mechanics, Vol. 66, No. 4, pp. 773-793, 2020.
  167. Wang, B., Oterkus, S., and Oterkus, E., “Thermal Diffusion Analysis by Using Dual Horizon Peridynamics”, Journal of Thermal Stresses, Vol. 44, No. 1, pp. 51-74, 2020.
  168. Li, W., and Guo, L., “Peridynamic Investigation of Chloride Diffusion in Concrete under Typical Environmental Factors”, Ocean Engineering, Vol. 239, p. 109770, 2021.
  169. Guo, L., Zhang, X., Li, W., and Zhou, X., “Multi-Scale Peridynamic Formulations for Chloride Diffusion in Concrete”, Engineering Analysis with Boundary Elements, Vol. 120, pp. 107-117, 2020.
  170. Chen, Z., and Bobaru, F., “Peridynamic Modeling of Pitting Corrosion Damage”, Journal of the Mechanics and Physics of Solids, Vol. 78, pp. 352-381, 2015.
  171. Zhao, J., Chen, Z., Mehrmashhadi, J., and Bobaru, F., “Construction of a Peridynamic Model for Transient Advection-Diffusion Problems”, International Journal of Heat and Mass Transfer, Vol. 126, pp. 1253-1266, 2018.
  172. Wang, L., Xu, J., and Wang, J., “The Green’s Functions for Peridynamic Non-Local Diffusion”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 472, No. 2193, p. 20160185, 2016.
  173. Katiyar, A., Foster, J. T., Ouchi, H., and Sharma, M. M., “A Peridynamic Formulation of Pressure Driven Convective Fluid Transport in Porous Media”, Journal of Computational Physics, Vol. 261, pp. 209-229, 2014.
  174. Ouchi, H., Katiyar, A., York, J., Foster, J. T., and Sharma, M. M., “A Fully Coupled Porous Flow and Geomechanics Model for Fluid Driven Cracks: A Peridynamics Approach”, Computational Mechanics, Vol. 55, No. 3, pp. 561-576, 2015.
  175. Jabakhanji, R., “Peridynamic Modeling of Coupled Mechanical Deformations and Transient Flow in Unsaturated Soils”, Ph.D. Thesis, Purdue University, West Lafayette, Indiana, 2013.
  176. Zhang, H., Li, H., Ye, H., and Zheng, Y., “A Coupling Peridynamic Approach for the Consolidation and Dynamic Analysis of Saturated Porous Media”, Computational Mechanics, Vol. 64, No. 4, pp. 1097-1113, 2019.
  177. Katiyar, A., Agrawal, S., Ouchi, H., Seleson, P., Foster, J. T., and Sharma, M. M., “A General Peridynamics Model for Multiphase Transport of Non-Newtonian Compressible Fluids in Porous Media”, Journal of Computational Physics, Vol. 402, p. 109075, 2020.
  178. Yan, H., Sedighi, M., and Jivkov, A. P., “Peridynamics Modelling of Coupled Water Flow and Chemical Transport in Unsaturated Porous Media”, Journal of Hydrology, Vol. 591, p. 125648, 2020.
  179. Shou, Y., and Zhou, X., “A Coupled Hydro-Mechanical Non-Ordinary State-Based Peridynamics for the Fissured Porous Rocks”, Engineering Analysis with Boundary Elements, Vol. 123, pp. 133-146, 2021.
  180. Ouchi, H., Katiyar, A., Foster, J. T., and Sharma, M. M., “A Peridynamics Model for the Propagation of Hydraulic Fractures in Heterogeneous, Naturally Fractured Reservoirs”, SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, Vol. 22, No. 4, pp. SPE-173361-PA, 2015.
  181. Nadimi, S., Miscovic, I., and McLennan, J., “A 3D Peridynamic Simulation of Hydraulic Fracture Process in a Heterogeneous Medium”, Journal of Petroleum Science and Engineering, Vol. 145, pp. 444-452, 2016.
  182. Ouchi, H., Agrawal, S., Foster, J. T., and Sharma, M. M., “Effect of Small Scale Heterogeneity on the Growth of Hydraulic Fractures”, SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, pp. SPE-184873-MS, 2017.
  183. Ni, T., Pesavento, F., Zaccariotto, M., Galvanetto, U., Zhu, Q., and Schrefler, B. A., “Hybrid FEM and Peridynamic Simulation of Hydraulic Fracture Propagation in Saturated Porous Media”, Computer Methods in Applied Mechanics and Engineering, Vol. 366, p. 113101, 2020.
  184. Zhang, Y., Huang, D., Cai, Z., and Xu, Y., “An Extended Ordinary State-Based Peridynamic Approach for Modelling Hydraulic Fracturing”, Engineering Fracture Mechanics, Vol. 234, p. 107086, 2020.
  185. Li, C., and Wang, J., “Peridynamic Simulation on Hydraulic Fracture Propagation in Shale Formation”, Engineering Fracture Mechanics, Vol. 258, p. 108095, 2021.
  186. Qin, M., Yang, D., and Chen, W., “Three-Dimensional Hydraulic Fracturing Modeling Based on Peridynamics”, Engineering Analysis with Boundary Elements, Vol. 141, pp. 153-166, 2022.
  187. Wu, F., Li, S., Duan, Q., and Li, X., “Application of the Method of Peridynamics to the Simulation of Hydraulic Fracturing Process”, International Conference on Discrete Element Methods, Dalian, China, pp. 561-569, 2016.
  188. Zheng, S., Manchanda, R., and Sharma, M. M., “Development of a Fully Implicit 3-D Geomechanical Fracture Simulator”, Journal of Petroleum Science and Engineering, Vol. 179, pp. 758-775, 2019.
  189. Agrawal, S., “An Integrated Peridynamics-Finite Volume Based Multi-Phase Flow, Geomechanics and Hydraulic Fracture Model”, Ph.D. Thesis, The University of Texas at Austin, Austin, 2019.
  190. Zhou, X., Wang, Y., and Shou, Y., “Hydromechanical Bond-Based Peridynamic Model for Pressurized and Fluid-Driven Fracturing Processes in Fissured Porous Rocks”, International Journal of Rock Mechanics and Mining Sciences, Vol. 132, p. 104383, 2020.
  191. Liu, R., Yan, J., and Li, S., “Modeling and Simulation of Ice–Water Interactions by Coupling Peridynamics with Updated Lagrangian Particle Hydrodynamics”, Computational Particle Mechanics, Vol. 7, No. 2, pp. 241-255, 2020.
  192. Mikata, Y., “Peridynamics for Fluid Mechanics and Acoustics”, Acta Mechanica, Vol. 232, No. 8, pp. 3011-3032, 2021.
  193. Zhao, J., Larios, A., and Bobaru, F., “Construction of a Peridynamic Model for Viscous Flow”, Journal of Computational Physics, p. 111509, 2022, https://doi.org/10.1016/j.jcp.2022.111509.
  194. Chang, H., Chen, A., Kareem, A., Hu, L., and Ma, R., “Peridynamic Differential Operator-Based Eulerian Particle Method for 2D Internal Flows”, Computer Methods in Applied Mechanics and Engineering, Vol. 392, p. 114568, 2022.
  195. Gao, Y., and Oterkus, S., “Multi-Phase Fluid Flow Simulation by Using Peridynamic Differential Operator”, Ocean Engineering, Vol. 216, p. 108081, 2020.
  196. Gao, Y., and Oterkus, S., “Nonlocal Numerical Simulation of Low Reynolds Number Laminar Fluid Motion by Using Peridynamic Differential Operator”, Ocean Engineering, Vol. 179, pp. 135-158, 2019.
  197. Gao, Y., and Oterkus, S., “Non-Local Modeling for Fluid Flow Coupled with Heat Transfer by Using Peridynamic Differential Operator”, Engineering Analysis with Boundary Elements, Vol. 105, pp. 104-121, 2019.
  198. Bazazzadeh, S., Shojaei, A., Zaccariotto, M., and Galvanetto, U., “Application of the Peridynamic Differential Operator to the Solution of Sloshing Problems in Tanks”, Engineering Computations, Vol. 36, No. 1, pp. 45-83, 2018.
  199. Gao, Y., and Oterkus, S., “Fluid-Elastic Structure Interaction Simulation by Using Ordinary State-Based Peridynamics and Peridynamic Differential Operator”, Engineering Analysis with Boundary Elements, Vol. 121, pp. 126-142, 2020.
  200. Kilic, B., Agwai, A., and Madenci, E., “Peridynamic Theory for Progressive Damage Prediction in Center-Cracked Composite Laminates”, Composite Structures, Vol. 90, No. 2, pp. 141-151, 2009.
  201. Hu, W., Ha, Y. D., and Bobaru, F., “Modeling Dynamic Fracture and Damage in a Fiber-Reinforced Composite Lamina with Peridynamics”, International Journal for Multiscale Computational Engineering, Vol. 9, No. 6, pp. 707-726, 2011.
  202. Oterkus, E., and Madenci, E., “Peridynamic Analysis of Fiber-Reinforced Composite Materials”, Journal of Mechanics of Materials and Structures, Vol. 7, No. 1, pp. 45-84, 2012.
  203. Hu, W., Ha, Y. D., and Bobaru, F., “Peridynamic Model for Dynamic Fracture in Unidirectional Fiber-Reinforced Composites”, Computer Methods in Applied Mechanics and Engineering, Vol. 217, pp. 247-261, 2012.
  204. Oterkus, E., and Madenci, E., “Peridynamic Theory for Damage Initiation and Growth in Composite Laminate”, Key Engineering Materials, Vol. 488, pp. 355-358, 2012.
  205. Oterkus, E., Madenci, E., Weckner, O., Silling, S., Bogert, P., and Tessler, A., “Combined Finite Element and Peridynamic Analyses for Predicting Failure in a Stiffened Composite Curved Panel with a Central Slot”, Composite Structures, Vol. 94, No. 3, pp. 839-850, 2012.
  206. Diyaroglu, C., Oterkus, E., Madenci, E., Rabczuk, T., and Siddiq, A., “Peridynamic Modeling of Composite Laminates under Explosive Loading”, Composite Structures, Vol. 144, pp. 14-23, 2016.
  207. Buryachenko, V. A., “Some General Representations in Thermoperistatics of Random Structure Composites”, International Journal for Multiscale Computational Engineering, Vol. 12, No. 4, pp. 331-350, 2014.
  208. Wu, L., Xu, Y., Huang, D., and Wang, L., “Influences of Temperature and Impacting Velocity on Dynamic Failure of Laminated Glass: Insights from Peridynamic Simulations”, Composite Structures, Vol. 259, p. 113472, 2021.
  209. Madenci, E., and Oterkus, S., “Peridynamic Modeling of Thermo-Oxidative Damage Evolution in a Composite Lamina”, 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, Texas, USA, p. 0197, 2017.
  210. Fang, G., Liu, S., Liang, J., Fu, M., Wang, B., and Meng, S., “A Stable Non‐Ordinary State‐Based Peridynamic Model for Laminated Composite Materials”, International Journal for Numerical Methods in Engineering, Vol. 122, No. 2, pp. 403-430, 2021.
  211. Rädel, M., Willberg, C., and Krause, D., “Peridynamic Analysis of Fibre-Matrix Debond and Matrix Failure Mechanisms in Composites under Transverse Tensile Load by an Energy-Based Damage Criterion”, Composites Part B: Engineering, Vol. 158, pp. 18-27, 2019.
  212. Zhou, W., Liu, D., and Liu, N., “Analyzing Dynamic Fracture Process in Fiber-Reinforced Composite Materials with a Peridynamic Model”, Engineering Fracture Mechanics, Vol. 178, pp. 60-76, 2017.
  213. ZHOU, W., and LIU, D., “A Peridynamic Model for Analyzing Crack Propagation in Unidirectional Composite Lamina”, Proceedings of the American Society for Composites: Thirty-First Technical Conference, Williamsburg VA, USA, 2016.
  214. Yu, Y., and Wang, H., “Peridynamic Analytical Method for Progressive Damage in Notched Composite Laminates”, Composite Structures, Vol. 108, pp. 801-810, 2014.
  215. Xia, W., Galadima, Y. K., Oterkus, E., and Oterkus, S., “Representative Volume Element Homogenization of a Composite Material by Using Bond-Based Peridynamics”, Journal of Composites and Biodegradable Polymers, Vol. 7, pp. 51-56, 2019.
  216. Silling, S. A., “Origin and Effect of Nonlocality in a Composite”, Journal of Mechanics of Materials and Structures, Vol. 9, No. 2, pp. 245-258, 2014.
  217. Shang, S., Qin, X., Li, S., Li, H., Cao, X., and Li, Y., “A Bond-Based Peridynamic Modeling of Machining of Unidirectional Carbon Fiber Reinforced Polymer Material”, The International Journal of Advanced Manufacturing Technology, Vol. 102, No. 9, pp. 4199-4211, 2019.
  218. Shang, S., Qin, X., Li, H., and Cao, X., “An Application of Non-Ordinary State-Based Peridynamics Theory in Cutting Process Modelling of Unidirectional Carbon Fiber Reinforced Polymer Material”, Composite Structures, Vol. 226, p. 111194, 2019.
  219. Roy, P., Deepu, S., Pathrikar, A., Roy, D., and Reddy, J., “Phase Field Based Peridynamics Damage Model for Delamination of Composite Structures”, Composite Structures, Vol. 180, pp. 972-993, 2017.
  220. Ren, B., Wu, C., Seleson, P., Zeng, D., Nishi, M., and Pasetto, M., “An FEM-Based Peridynamic Model for Failure Analysis of Unidirectional Fiber-Reinforced Laminates”, Journal of Peridynamics and Nonlocal Modeling, Vol. 4, No. 1, pp. 139-158, 2022.
  221. Ren, B., Wu, C., Seleson, P., Zeng, D., and Lyu, D., “A Peridynamic Failure Analysis of Fiber-Reinforced Composite Laminates Using Finite Element Discontinuous Galerkin Approximations”, International Journal of Fracture, Vol. 214, No. 1, pp. 49-68, 2018.
  222. Mehrmashhadi, J., Chen, Z., Zhao, J., and Bobaru, F., “A Stochastically Homogenized Peridynamic Model for Intraply Fracture in Fiber-Reinforced Composites”, Composites Science and Technology, Vol. 182, p. 107770, 2019.
  223. Madenci, E., Yaghoobi, A., Barut, A., and Phan, N., “Peridynamic Modeling of Compression after Impact Damage in Composite Laminates”, Journal of Peridynamics and Nonlocal Modeling, Vol. 3, No. 4, pp. 327-347, 2021.
  224. Madenci, E., Barut, A., Yaghoobi, A., Phan, N., and Fertig III, R., “Combined Peridynamics and Kinetic Theory of Fracture for Fatigue Failure of Composites under Constant and Variable Amplitude Loading”, Theoretical and Applied Fracture Mechanics, Vol. 112, p. 102824, 2021.
  225. Ma, Q., Wu, L., and Huang, D., “An Extended Peridynamic Model for Dynamic Fracture of Laminated Glass Considering Interfacial Debonding”, Composite Structures, Vol. 290, p. 115552, 2022.
  226. Jiang, X. W., Wang, H., and Guo, S., “Peridynamic Open-Hole Tensile Strength Prediction of Fiber-Reinforced Composite Laminate Using Energy-Based Failure Criteria”, Advances in Materials Science and Engineering, 2019, https://doi.org/10.1155/2019/7694081.
  227. Jiang, X. W., and Wang, H., “Ordinary State-Based Peridynamics for Open-Hole Tensile Strength Prediction of Fiber-Reinforced Composite Laminates”, Journal of Mechanics of Materials and Structures, Vol. 13, No. 1, pp. 53-82, 2018.
  228. Jiang, X. W., Guo, S., Li, H., and Wang, H., “Peridynamic Modeling of Mode-I Delamination Growth in Double Cantilever Composite Beam Test: A Two-Dimensional Modeling Using Revised Energy-Based Failure Criteria”, Applied Sciences, Vol. 9, No. 4, p. 656, 2019.
  229. Hu, Y., Yu, Y., and Madenci, E., “Peridynamic Modeling of Composite Laminates with Material Coupling and Transverse Shear Deformation”, Composite Structures, Vol. 253, p. 112760, 2020.
  230. Hu, Y., Madenci, E., and Phan, N. D., “Peridynamics for Predicting Tensile and Compressive Strength of Notched Composites”, 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, San Diego, California, USA, p. 1723, 2016.
  231. Hu, Y., Madenci, E., and Phan, N. D., “Peridynamic Modeling of Defects in Composites”, 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida, p. 1875, 2015.
  232. Hu, Y., Madenci, E., and Phan, N., “Peridynamics for Predicting Damage and Its Growth in Composites”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 40, No. 8, pp. 1214-1226, 2017.
  233. Hu, Y., and Madenci, E., “Peridynamic Modeling of Fatigue Damage in Notched Composite Laminates”, 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, Texas, p. 1140, 2017.
  234. Hu, Y., and Madenci, E., “Peridynamics for Fatigue Life and Residual Strength Prediction of Composite Laminates”, Composite Structures, Vol. 160, pp. 169-184, 2017.
  235. Hu, Y., and Madenci, E., “Bond-Based Peridynamic Modeling of Composite Laminates with Arbitrary Fiber Orientation and Stacking Sequence”, Composite Structures, Vol. 153, pp. 139-175, 2016.
  236. Hu, Y., De Carvalho, N., and Madenci, E., “Peridynamic Modeling of Delamination Growth in Composite Laminates”, Composite Structures, Vol. 132, pp. 610-620, 2015.
  237. Gok, E., Yolum, U., and Güler, M. A., “Mode II and Mixed Mode Delamination Growth in Composite Materials Using Peridynamic Theory”, Procedia Structural Integrity, Vol. 28, pp. 2043-2054, 2020.
  238. Gao, Y., and Oterkus, S., “Peridynamic Analysis of Marine Composites under Shock Loads by Considering Thermomechanical Coupling Effects”, Journal of Marine Science and Engineering, Vol. 6, No. 2, p. 38, 2018.
  239. Dorduncu, M., “Peridynamic Modeling of Delaminations in Laminated Composite Beams Using Refined Zigzag Theory”, Theoretical and Applied Fracture Mechanics, Vol. 112, p. 102832, 2021.
  240. Cao, X., Qin, X., Li, H., Shang, S., Li, S., and Liu, H., “Non-Ordinary State-Based Peridynamic Fatigue Modelling of Composite Laminates with Arbitrary Fibre Orientation”, Theoretical and Applied Fracture Mechanics, Vol. 120, p. 103393, 2022.
  241. Askari, A., Azdoud, Y., Han, F., Lubineau, G., and Silling, S., “Peridynamics for Analysis of Failure in Advanced Composite Materials”, in Numerical Modelling of Failure in Advanced Composite Materials, Elsevier, pp. 331-350, 2015.
  242. Askari, E., Xu, J., and Silling, S., “Peridynamic Analysis of Damage and Failure in Composites”, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, p. 88, 2006.
  243. Cheng, Z., Hu, Y., Chu, L., Yuan, C., and Feng, H., “Peridynamic Modeling of Engineered Cementitious Composite with Fiber Effects”, Engineering Fracture Mechanics, Vol. 245, p. 107601, 2021.
  244. Wu, P., Yang, F., Chen, Z., and Bobaru, F., “Stochastically Homogenized Peridynamic Model for Dynamic Fracture Analysis of Concrete”, Engineering Fracture Mechanics, Vol. 253, p. 107863, 2021.
  245. Jones, R., Rimsza, J., Trageser, J., and Hogancamp, J., “Simulation of Hardened Cement Degradation and Estimation of Uncertainty in Predicted Failure Times with Peridynamics”, Construction and Building Materials, Vol. 286, p. 122927, 2021.
  246. Zhang, Y., and Qiao, P., “A Fully-Discrete Peridynamic Modeling Approach for Tensile Fracture of Fiber-Reinforced Cementitious Composites”, Engineering Fracture Mechanics, Vol. 242, p. 107454, 2021.
  247. Hou, D., Zhang, W., Ge, Z., Wang, P., Wang, X., and Zhang, H., “Experimentally Validated Peridynamic Fracture Modelling of Mortar at the Meso-Scale”, Construction and Building Materials, Vol. 267, p. 120939, 2021.
  248. Wu, P., Zhao, J., Chen, Z., and Bobaru, F., “Validation of a Stochastically Homogenized Peridynamic Model for Quasi-Static Fracture in Concrete”, Engineering Fracture Mechanics, Vol. 237, p. 107293, 2020.
  249. Yaghoobi, A., and Chorzepa, M. G., “Fracture Analysis of Fiber Reinforced Concrete Structures in the Micropolar Peridynamic Analysis Framework”, Engineering Fracture Mechanics, Vol. 169, pp. 238-250, 2017.
  250. Candaş, A., Oterkus, E., and İmrak, C. E., “Peridynamic Simulation of Dynamic Fracture in Functionally Graded Materials Subjected to Impact Load”, Engineering with Computers, 2021, https://doi.org/10.1007/s00366-021-01540-2.
  251. Cheng, Z., Zhang, G., Wang, Y., and Bobaru, F., “A Peridynamic Model for Dynamic Fracture in Functionally Graded Materials”, Composite Structures, Vol. 133, pp. 529-546, 2015.
  252. Ozdemir, M., Kefal, A., Imachi, M., Tanaka, S., and Oterkus, E., “Dynamic Fracture Analysis of Functionally Graded Materials Using Ordinary State-Based Peridynamics”, Composite Structures, Vol. 244, p. 112296, 2020.
  253. Decklever, J., and Spanos, P., “Nanocomposite Material Properties Estimation and Fracture Analysis Via Peridynamics and Monte Carlo Simulation”, Probabilistic Engineering Mechanics, Vol. 44, pp. 77-88, 2016.
  254. Duzzi, M., Zaccariotto, M., and Galvanetto, U., “Application of Peridynamic Theory to Nanocomposite Materials”, Advanced Materials Research, Vol. 1016, pp. 44-48, 2014.
  255. Sadowski, T., and Pankowski, B., “Peridynamical Modelling of Nanoindentation in Ceramic Composites”, Solid State Phenomena, Vol. 254, pp. 55-59, 2016.
  256. Lammi, C. J., and Vogler, T. J., “Mesoscale Simulations of Granular Materials with Peridynamics”, AIP Conference Proceedings, Puertollano, Spain, Vol. 1426, No. 1, pp. 1467-1470, 2012.
  257. Ren, B., Fan, H., Bergel, G. L., Regueiro, R. A., Lai, X., and Li, S., “A Peridynamics–SPH Coupling Approach to Simulate Soil Fragmentation Induced by Shock Waves”, Computational Mechanics, Vol. 55, No. 2, pp. 287-302, 2015.
  258. Fan, H., and Li, S., “A Peridynamics-SPH Modeling and Simulation of Blast Fragmentation of Soil under Buried Explosive Loads”, Computer Methods in Applied Mechanics and Engineering, Vol. 318, pp. 349-381, 2017.
  259. Fan, H., and Li, S., “Parallel Peridynamics–SPH Simulation of Explosion Induced Soil Fragmentation by Using OpenMP”, Computational Particle Mechanics, Vol. 4, No. 2, pp. 199-211, 2017.
  260. Lai, X., Ren, B., Fan, H., Li, S., Wu, C., Regueiro, R. A., and Liu, L., “Peridynamics Simulations of Geomaterial Fragmentation by Impulse Loads”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 39, No. 12, pp. 1304-1330, 2015.
  261. Zhang, Y., Deng, H., Deng, J., Liu, C., and Ke, B., “Peridynamics Simulation of Crack Propagation of Ring-Shaped Specimen Like Rock under Dynamic Loading”, International Journal of Rock Mechanics and Mining Sciences, Vol. 123, p. 104093, 2019.
  262. Zhu, F., and Zhao, J., “Peridynamic Modelling of Blasting Induced Rock Fractures”, Journal of the Mechanics and Physics of Solids, Vol. 153, p. 104469, 2021.
  263. Wang, H., Guo, C., Wang, F., Ni, P., and Sun, W., “Peridynamics Simulation of Structural Damage Characteristics in Rock Sheds under Rockfall Impact”, Computers and Geotechnics, Vol. 143, p. 104625, 2022.
  264. Ha, Y. D., Lee, J., and Hong, J., “Fracturing Patterns of Rock-Like Materials in Compression Captured with Peridynamics”, Engineering Fracture Mechanics, Vol. 144, pp. 176-193, 2015.
  265. Rabczuk, T., and Ren, H., “A Peridynamics Formulation for Quasi-Static Fracture and Contact in Rock”, Engineering Geology, Vol. 225, pp. 42-48, 2017.
  266. Wang, Y., Zhou, X., and Xu, X., “Numerical Simulation of Propagation and Coalescence of Flaws in Rock Materials under Compressive Loads Using the Extended Non-Ordinary State-Based Peridynamics”, Engineering Fracture Mechanics, Vol. 163, pp. 248-273, 2016.
  267. Zhou, X., and Shou, Y., “Numerical Simulation of Failure of Rock-Like Material Subjected to Compressive Loads Using Improved Peridynamic Method”, International Journal of Geomechanics, Vol. 17, No. 3, p. 04016086, 2017.
  268. Wang, Y., Zhou, X., and Shou, Y., “The Modeling of Crack Propagation and Coalescence in Rocks under Uniaxial Compression Using the Novel Conjugated Bond-Based Peridynamics”, International Journal of Mechanical Sciences, Vol. 128, pp. 614-643, 2017.
  269. Diana, V., Labuz, J. F., and Biolzi, L., “Simulating Fracture in Rock Using a Micropolar Peridynamic Formulation”, Engineering Fracture Mechanics, Vol. 230, p. 106985, 2020.
  270. Zhang, Y., Deng, H., Deng, J., Liu, C., and Yu, S., “Peridynamic Simulation of Crack Propagation of Non-Homogeneous Brittle Rock-Like Materials”, Theoretical and Applied Fracture Mechanics, Vol. 106, p. 102438, 2020.
  271. Gao, C., Zhou, Z., Li, L., Li, Z., Zhang, D., and Cheng, S., “Strength Reduction Model for Jointed Rock Masses and Peridynamics Simulation of Uniaxial Compression Testing”, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, Vol. 7, No. 2, pp. 1-21, 2021.
  272. Sedighi, M., Yan, H., and Jivkov, A. P., “Peridynamic Modelling of Clay Erosion”, Géotechnique, Vol. 72, No. 6, pp. 510-521, 2022.
  273. Lai, X., Liu, L. S., Liu, Q. W., Cao, D. F., Wang, Z., and Zhai, P. C., “Slope Stability Analysis by Peridynamic Theory”, Applied Mechanics and Materials, Vol. 744, pp. 584-588, 2015.
  274. Zhang, Y., Deng, J., Deng, H., and Ke, B., “Peridynamics Simulation of Rock Fracturing under Liquid Carbon Dioxide Blasting”, International Journal of Damage Mechanics, Vol. 28, No. 7, pp. 1038-1052, 2019.
  275. Zhang, T., Zhou, X., and Qian, Q., “The Peridynamic Drucker‐Prager Plastic Model with Fractional Order Derivative for the Numerical Simulation of Tunnel Excavation”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 46, No. 9, pp. 1620-1659, 2022.
  276. Butt, S., and Meschke, G., “A 3D Peridynamic Model of Rock Cutting with TBM Disc Cutters”, Proceedings of the 7th GACM Colloquium on Computational Mechanics, Stuttgart, Germany, 2017.
  277. Gao, C., Zhou, Z., Li, Z., Li, L., and Cheng, S., “Peridynamics Simulation of Surrounding Rock Damage Characteristics During Tunnel Excavation”, Tunnelling and Underground Space Technology, Vol. 97, p. 103289, 2020.
  278. Zhou, Z., Li, Z., Gao, C., Zhang, D., Wang, M., Wei, C., and Bai, S., “Peridynamic Micro-Elastoplastic Constitutive Model and Its Application in the Failure Analysis of Rock Masses”, Computers and Geotechnics, Vol. 132, p. 104037, 2021.
  279. Zhou, X., and Wang, Y., “Numerical Simulation of Crack Propagation and Coalescence in Pre-Cracked Rock-Like Brazilian Disks Using the Non-Ordinary State-Based Peridynamics”, International Journal of Rock Mechanics and Mining Sciences, Vol. 89, pp. 235-249, 2016.
  280. Zhu, F., and Zhao, J., “Sand Grain Crushing under Multi-Axial Loading Conditions”, International Geotechnics Symposium cum International Meeting of CSRME 14th Biennial National Congress, Hong Kong, China, 2016.
  281. Panchadhara, R., Gordon, P. A., and Parks, M. L., “Modeling Propellant-Based Stimulation of a Borehole with Peridynamics”, International Journal of Rock Mechanics and Mining Sciences, Vol. 93, pp. 330-343, 2017.
  282. Song, X., and Khalili, N., “A Peridynamics Model for Strain Localization Analysis of Geomaterials”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 43, No. 1, pp. 77-96, 2019.
  283. Chen, J., Liao, H., Yang, B., Tian, Y., Xin, Y., and Yan, Z., “Adaptive Modeling of Rock Crack Mechanism During Drilling Operation Based on Modified Peridynamics”, Engineering Fracture Mechanics, Vol. 217, p. 106538, 2019.
  284. Chen, Z., Niazi, S., and Bobaru, F., “A Peridynamic Model for Brittle Damage and Fracture in Porous Materials”, International Journal of Rock Mechanics and Mining Sciences, Vol. 122, p. 104059, 2019.
  285. Zhu, F., and Zhao, J., “Modeling Continuous Grain Crushing in Granular Media: A Hybrid Peridynamics and Physics Engine Approach”, Computer Methods in Applied Mechanics and Engineering, Vol. 348, pp. 334-355, 2019.
  286. Yan, H., Sedighi, M., and Jivkov, A., “Peridynamic Modelling of Coupled Hydro-Chemical Effects on Bentonite Erosion”, 3rd International Symposium on Coupled Phenomena in Environmental Geotechnics, 2020.
  287. Zhou, X., and Wang, Y., “State-of-the-Art Review on the Progressive Failure Characteristics of Geomaterials in Peridynamic Theory”, Journal of Engineering Mechanics, Vol. 147, No. 1, p. 03120001, 2021.
  288. Gao, C., Li, L., Zhou, Z., Li, Z., Cheng, S., Wang, L., and Zhang, D., “Peridynamics Simulation of Water Inrush Channels Evolution Process Due to Rock Mass Progressive Failure in Karst Tunnels”, International Journal of Geomechanics, Vol. 21, No. 4, p. 04021028, 2021.
  289. Jha, P. K., Desai, P. S., Bhattacharya, D., and Lipton, R., “Peridynamics-Based Discrete Element Method (Peridem) Model of Granular Systems Involving Breakage of Arbitrarily Shaped Particles”, Journal of the Mechanics and Physics of Solids, Vol. 151, p. 104376, 2021.
  290. Oterkus, S., Madenci, E., and Oterkus, E., “Application of Peridynamics for Rock Mechanics and Porous Media”, in Peridynamic Modeling, Numerical Techniques, and Applications, Elsevier, pp. 387-401, 2021.
  291. Ni, T., Pesavento, F., Zaccariotto, M., Galvanetto, U., and Schrefler, B. A., “Numerical Simulation of Forerunning Fracture in Saturated Porous Solids with Hybrid FEM/Peridynamic Model”, Computers and Geotechnics, Vol. 133, p. 104024, 2021.
  292. Zhou, X., Zhang, T., and Qian, H., “A Two-Dimensional Ordinary State-Based Peridynamic Model for Plastic Deformation Based on Drucker-Prager Criteria with Non-Associated Flow Rule”, International Journal of Rock Mechanics and Mining Sciences, Vol. 146, p. 104857, 2021.
  293. Zhang, Y., Liu, C., Deng, H., Lin, Y., Li, J., and Gao, F., “Peridynamic Simulation of Heterogeneous Rock Based on Digital Image Processing and Low-Field Nuclear Magnetic Resonance Imaging”, International Journal of Geomechanics, Vol. 22, No. 6, p. 04022083, 2022.
  294. Deng, Q., Chen, Y., and Lee, J., “An Investigation of the Microscopic Mechanism of Fracture and Healing Processes in Cortical Bone”, International Journal of Damage Mechanics, Vol. 18, No. 5, pp. 491-502, 2009.
  295. Perré, P., Almeida, G., Ayouz, M., and Frank, X., “New Modelling Approaches to Predict Wood Properties from Its Cellular Structure: Image-Based Representation and Meshless Methods”, Annals of Forest Science, Vol. 73, No. 1, pp. 147-162, 2016.
  296. Lejeune, E., and Linder, C., “Quantifying the Relationship between Cell Division Angle and Morphogenesis through Computational Modeling”, Journal of Theoretical Biology, Vol. 418, pp. 1-7, 2017.
  297. Lejeune, E., and Linder, C., “Modeling Tumor Growth with Peridynamics”, Biomechanics and Modeling in Mechanobiology, Vol. 16, No. 4, pp. 1141-1157, 2017.
  298. Lejeune, E., and Linder, C., “Modeling Mechanical Inhomogeneities in Small Populations of Proliferating Monolayers and Spheroids”, Biomechanics and Modeling in Mechanobiology, Vol. 17, No. 3, pp. 727-743, 2018.
  299. Lejeune, E., and Linder, C., “Understanding the Relationship between Cell Death and Tissue Shrinkage Via a Stochastic Agent-Based Model”, Journal of Biomechanics, Vol. 73, pp. 9-17, 2018.
  300. Lejeune, E., and Linder, C., “Modeling Biological Materials with Peridynamics”, in Peridynamic Modeling, Numerical Techniques, and Applications, Elsevier, pp. 249-273, 2021.
  301. Schaller, E., Javili, A., Schmidt, I., Papastavrou, A., and Steinmann, P., “A Peridynamic Formulation for Nonlocal Bone Remodelling”, Computer Methods in Biomechanics and Biomedical Engineering, 2022, https://doi.org/10.1080/10255842.2022.2039641.
  302. Diehl, P., Lipton, R., Wick, T., and Tyagi, M., “A Comparative Review of Peridynamics and Phase-Field Models for Engineering Fracture Mechanics”, Computational Mechanics, Vol. 69, pp. 1259–1293, 2022.
  303. Hattori, G., Hobbs, M., and Orr, J., “A Review on the Developments of Peridynamics for Reinforced Concrete Structures”, Archives of Computational Methods in Engineering, Vol. 28, No. 7, pp. 4655-4686, 2021.
  304. Diehl, P., Prudhomme, S., and Lévesque, M., “A Review of Benchmark Experiments for the Validation of Peridynamics Models”, Journal of Peridynamics and Nonlocal Modeling, Vol. 1, No. 1, pp. 14-35, 2019.
  305. Dahal, B., Seleson, P., and Trageser, J., “The Evolution of the Peridynamics Co-Authorship Network”, Journal of Peridynamics and Nonlocal Modeling, 2022,  https://doi.org/10.1007/s42102-022-00082-5.

 

تحت نظارت وف ایرانی