نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشگاه تهران
2 دانشگاه تربیت مدرس
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
Numerical approaches are one of the best tools for seismic response analysis. In between, the Boundary Element Method (BEM) has attracted special attention. In this paper, a comprehensive study has been performed to characterize the dependence of stability and accuracy of the time domain BEM on the chosen time step duration and effective length of the elements. To this end, the two parameters β and λ/L, widely known and used in the literature for the investigation of numerical stability and accuracy, have been employed. Three different environments as homogeneous, pseudo-homogeneous and non- homogeneous have been analyzed through total number of 280 numerical models. It is found that the stability and accuracy of the used algorithm is considerably influenced by the mentioned parameters, in a way that stable and accurate results will be achieved merely when the wave travels one-fourth to less than half the element size during each time step (0.24<β<0.4) and also when at least one and a half node is defined per the shortest wave-length (λ/L>1.5). It also became clear that in the modeling of non-homogeneous environments, the β value for the environment with the lowest wave velocity specifies the range of acceptable results.
کلیدواژهها [English]