بررسی اثر تغییر نوع سیال بر مشخصه‌های هیدرودینامیکی و حرارتی جریان در یک میکروچاه حرارتی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

چکیده

چاه‌گرمایی میکروکانالی حرارت را از تجهیزات جذب می‌کنند و با بیشینه‌نمودن  سطح تماس با سیال اطرافش، حرارت را به آن سیال منتقل می‌کنند. در پژوهش حاضر به شبیه‌سازی سه بعدی جریان آب، نانوسیال و نانوسیال هیبریدی در یک چاه گرمایی با فین‌های با آرایش مثلثی و سطح مقطع دایره با ارتفاع 5/1میلی‌متر و شارحرارتی یکنواخت پرداخته می‌شود. شبیه‌سازی به کمک نرم‌افزار تجاری انسیس فلوئنت 2019 انجام شده است. شرط مرزی شار حرارتی ثابت و یکنواخت بر دیواره پایین چاه حرارتی اعمال شده است. اثرات متغیرهای کسرحجمی نانوذرات، نوع نانو ذرات و عدد رینولدز برروی عملکرد هیدرودینامیکی و حرارتی چاه حرارتی مورد بررسی قرار می‌گیرد. دو نوع نانوسیال و یک نوع نانوسیال هیبریدی در سه کسر حجمی 01/0، 002/0 و 04/0 مورد بررسی می‌گیرند. در ابتدا افت فشار و انتقال حرارت مورد بررسی قرار می‌گیرد سپس با تعریف ضریب عملکرد حرارتی بهترین نانوسیال مشخص می‌شود. شبیه‌سازی‌ها نشان می‌دهد با افزایش کسرحجمی در نانوسیال آب- اکسیدآلومینیوم انتقال‌حرارت کاهش می‌یابد اما در نانوسیال آب- مس با افزایش کسرحجمی انتقال‌حرارت افزایش‌ می‌یابد. همچنین در نانوسیال هیبریدی آب- اکسید آلومینیوم- مس در کسر حجمی 04/0 از بازه عدد رینولدز400 به بالا انتقال حرارت افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the effect of changing the type of fluid on the hydrodynamic and thermal characteristics of the flow in a thermal micro-heatsink

نویسندگان [English]

  • Ahmad Reza Rahmati
  • Hamed Noroozi
Department of Mechanical Engineering, University of Kashan, Kashan, Iran
چکیده [English]

In recent years, many studies have been conducted on the field of microchannels' sinks. The microchannel sink absorbs heat from other equipments and transfers it to the fluid by maximizing the contact area. In the present research, three-dimensional water flow, nanofluid and hybrid nanofluid in heat sink with constant heat flux, have been studied. The simulation process have been done in the commercial software ANSYS fluent. In the simulation process, the constant and uniform heat flux boundary condition has been applied to the bottom of the heat sink's wall. The influence of variables such as the nanoparticles volume fraction, nanoparticles types and Reynolds values on the hydrodynamic performance and heat sink will be investigated. After this stage, two types of nanofluid and one type of hybrid nanofluid in 0.04, 0.02 and 0.01 volume fractions will be considered as well. In this paper, first the pressure drops and heat transfer will be examined, and then the best nanofluid will be defined by considering the coefficient of thermal performance. The simulations show that the heat transfer decreases with increasing the volume fraction in the water-aluminium oxide nanofluid. On the other hand, the heat transfer increases with raising the volume fraction in the water-copper nanofluid. Also in the water-aluminium oxide-copper hybrid nanofluid, the heat transfer rises up in the 0.04 volume fraction in the range of 400 and above values for the Reynolds number.

کلیدواژه‌ها [English]

  • Heat sink
  • Heat transfer
  • Nano fluid
  • Hybrid Nano fluid
  • Variable properties
  1. Esfe, M. , Esfandeh, S., and Kamyab, M. H., History and Introduction, Hybrid Nanofluids for Convection Heat Transfer, Elsevier, pp. 1-48, 2020.
  2. Bhandari, P., and Prajapati, Y. K., “Thermal Performance of Open Microchannel Heat Sink with Variable Pin Fin Height”, International Journal of Thermal Sciences, Vol. 159, p. 106609, 2021
  3. Lee, S., Choi, S.S., Li, S.A., and Eastman, J.A., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, 280-289 ,1999.
  4. Xie, H., Wang, J., Xi, T., Liu, Y., Ai, F., and Wu, Q., “Thermal conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles” Journal of Applied Physics, Vol. 91, pp. 4568-4572, 2002.
  5. Wen, D., and Ding, Y., “Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions”, International journal of Heat and Mass Transfer, Vol. 47, No. 24, pp. 5181-5188, 2004.
  6. Murshed, S., Leong, K., and Yang, C., “Enhanced Thermal Conductivity of TiO2—water Based Nanofluids”, International Journal of Thermal Sciences, Vol. 44, No. 4, pp. 367-373, 2005.
  7. Jang, S. P., and Choi, S. U., “Cooling Performance of a Microchannel Heat Sink with Nanofluids”, Applied Thermal Engineering, Vol. 26, No. 17-18, pp. 2457-2463, 2006.
  8. Polidori, G., Fohanno, S., and Nguyen, C., “A note on heat transfer modelling of Newtonian nanofluids in laminar free convection”, International Journal of Thermal Sciences,. 46, No. 8, pp. 739-744, 2007.
  9. Ho, C. J., Wei, L., and Li, Z., “An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink with Al2O3/water Nanofluid”, Applied Thermal Engineering, 30, No. 2-3, pp. 96-103, 2010.
  10. Chandrasekar, M., and Suresh, S., “Experiments to Explore the Mechanisms of Heat Transfer in Nanocrystalline Alumina/Water Nanofluid Under Laminar and Turbulent Flow Conditions”, Experimental Heat Transfer, Vol. 24, No. 3, pp. 234-256, 2011.
  11. Anoop, K., Sadr, R., Yu, J., Kang, S., Jeon, S., and Banerjee, D., “Experimental Study of Forced Convective Heat Transfer of Nanofluids in a Microchannel”, International Communications in Heat and Mass Transfer, 39, No. 9, pp.1325-1330, 2012.
  12. Jeong, J., Li, C., Kwon, Y., Lee, J. K., Kim, S. T., Yun, R., “Particle SHAPE Effect on the Viscosity and Thermal Conductivity of ZnO Nanofluids”, International journal of Refrigeration,. Vol. 36, No. 8, pp. 2233-2241, 2013.
  13. Khoshvaght-Aliabadi, M., and Sahamiyan, M., “Performance of Nanofluid Flow in Corrugated Minichannels Heat Sink (CMCHS)”, Energy Conversion and Management, 108, pp. 297-308, 2016.
  14. Mehryan, S., Kashkooli, F. M., Ghalambaz, M., Chamkha, A. J., “Free Convection of Hybrid Al2O3-Cu Water Nanofluid in a differentially Heated Porous Cavity”, Advanced Powder Technology,. 28, No. 9, pp. 2295-2305, 2017.
  15. Thakre, S., Pandhare, A., Malwe, P., Gupta, N., Kothare, C., Magade, P., Patel, A., Meena, R., Veza, I., Natrayan L.. and Panchal, H., “Heat transfer and Pressure Drop Analysis of a Microchannel Heat Sink Using Nanofluids for Energy Applications”, Kerntechnik, Vol.88, No. 5, pp. 543-555, 2023.
  16. Incropera, F.P., DeWitt, D.P., Bergman, T.L., and Lavine, A., Principles of heat and Mass Transfer, John Wiley & Sons, 2013.
  17. Kadhim, H. T., Jabbar, F. A., and Rona, A., “Cu-Al2O3 Hybrid Nanofluid Natural Convection in an Inclined Enclosure with Wavy Walls Partially Layered by Porous Medium”, International Journal of Mechanical Sciences, Vol. 186, pp. 105889, 2020.
  18. Pak, B. C., and Cho, Y. I., “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles”, Experimental Heat Transfer an International Journal, Vol. 11, No. 2, pp. 151-170, 1998.
  19. Xuan, Y., and Roetzel, W., “Conceptions for Heat Transfer Correlation of Nanofluids” International Journal of Heat and Mass Transfer, 43, No. 19, pp. 3701-3707, 2000.
  20. Brinkman, H. C., “The Viscosity of Concentrated Suspensions and Solutions” The Journal of Chemical Physics, Vol. 20, No. 4, pp. 571-571, 1952.
  21. Maxwell, J. C., A Treatise ON Electricity and Magnetism: Pt. III. Magnetism. pt. IV. Electromagnetism, Vol. 2, Clarendon press, 1881.
  22. Maradiya, C., Vadher, J., and Agarwal, R., “The Heat Transfer Enhancement Techniques and Their Thermal Performance Factor” Beni-Suef University Journal of Basic and Applied Sciences, 7, No. 1, pp. 1-21, 2018.
  23. Wang, Y., Zhu, K., Cui, Z., and Wei, J., “Effects of the location of the inlet and outlet on heat transfer performance in pin fin CPU heat sink Applied Thermal Engineering, 2019. 151: p. 506-513.
  24. Yadav, V., Baghel, K., Kumar, R., and Kadam S.T., “Numerical Investigation Of Heat Transfer In Extended Surface Microchannels”, International Journal of Heat and Mass Transfer, Vol. 93, pp. 612-622, 2016.

ارتقاء امنیت وب با وف ایرانی