روش بدون شبکه توابع پایه ‌نمایی با مرتبه پیوستگی دلخواه برای خمش صفحات مرکب لایه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان

چکیده

در این مقاله یک روش بدون شبکه محلی براساس فرمول‌بندی ترفتز به منظور تحلیل رفتار خمشی ورق‌های کامپوزیت لایه­ای بدون محدودیت در آرایش لایه‌ها توسعه داده شده است. مدل‌سازی صفحات با استفاده از تئوری تغییرشکل برشی مرتبه اول (میندلین) صورت گرفته است. در روش پیشنهادی دامنه حل شامل ناحیه داخل و مرزهای دامنه به وسیله‌ دو مجموعه از شبکه نقاط گسسته­سازی می‌شود. نقاطی که حاوی مجهولات درجات آزادی هستند نقاط گره‌ای، و نقاط شبکه‌ دوم که به منظور تشکیل معادلات تعریف می‌شوند نقاط واسطه نامیده می‌شوند. متناظر با هر یک از این نقاط یک زیردامنه به نام ابر حاوی تعدادی از نقاط گره‌ای مجاور در نظر گرفته می‌شود. در این روش، جواب مسئله از مجموع دو بخش همگن و خصوصی حاصل شده و برای درون‌یابی هر کدام از یک سری متشکل از توابع پایه نمایی استفاده می‌شود. فرمول‌بندی این روش قابلیت ایجاد پیوستگی با مراتب دلخواه میان زیرناحیه‌ها بدون اضافه نمودن هرگونه درجه آزادی را دارا است، به این صورت که مقادیر درجات آزادی و یا مشتقات آن­ها تا مرتبه دلخواه در هر نقطه گره­ای توسط مقادیر متناظر از نقاط گره­ای مجاور همان ابر درونیابی می­شوند، سپس همپوشانی ابرها این پیوستگی را به کل دامنه سرایت می­دهد. برای بررسی کارایی و دقت روش، نتایج حاصل با حل دقیق مسئله در صورت وجود، و یا با سایر مراجع مقایسه می‌شوند که همگی بیانگر عملکرد بسیار خوب روش هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Meshless Local Exponential Basis Functions with Up-To-Desired Continuity Order for Bending of Laminated Composite Plates

نویسندگان [English]

  • Alireza Motamedi
  • Nima noormohammadi
  • Bijan Boroomand
Department of Civil Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
چکیده [English]

This paper presents a meshless local method based on Trefftz formulation for bending analysis of laminated composite plates regardless of the lamination scheme. The plates are modelled based on Mindlin’s first order shear deformation theory. In the proposed method, the solution domain is discretized by two sets of point grids, namely the nodal grid that contain the degrees of freedom (DOFs), and the intermediate point grid that have no DOFs, but are only used for imposition of the governing equations and the boundary conditions. A subdomain, named cloud, is considered corresponding to every node, which contains a definite number of its adjacent nodes. The problem solution is constituted of homogeneous and particular parts within the cloud, where exponential basis functions are used to interpolate each part. The implemented formulation is capable of extending continuity of the DOFs up to desired order of derivatives, by only interpolating the intended DOF by means of its corresponding DOFs from the nodes in its close neighborhood within the cloud in a weighted residual approach, without introducing extra DOFs. The overlap of adjacent clouds integrates the solution function over the entire domain. To investigate the applicability and accuracy of the proposed method, numerical examples will compare the extracted solutions by their exact counterparts or available data in the literature, which reflect perfect performance of the method.

کلیدواژه‌ها [English]

  • Composite plate
  • Mindlin’s theory
  • Trefftz
  • Meshless method
  • Exponential basis functions
  1. Mindlin, R., “Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates”, Journal of Applied Mechanic, Vol. 18, pp. 31-38,
  2. Kumar, R., Lal, A., Singh, B., and Singh, J., “New transverse shear deformation theory for bending analysis of FGM plate under patch load”, Composite Structures, 208, pp. 91-100, 2019.
  3. Grover, N., Singh, B., and Maiti, D., “New nonpolynomial shear-deformation theories for structural behavior of laminated-composite and sandwich plates”, AIAA Journal, 51, pp. 1861-1871, 2013.
  4. Karama, M., Afaq, K., and Mistou, S., “A new theory for laminated composite plates”, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 223, 53-62, 2009.
  5. Reddy, J. N., “Mechanics of laminated composite plates and shells: theory and analysis”, CRC Press, 2003.
  6. Touratier, M., “An efficient standard plate theory”, International Journal of Engineering Science, Vol. 29, pp. 901-916,
  7. Babaei, M., Asemi, K., and Kiarasi, F., “Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method”, Mechanics Based Design of Structures and Machines, Vol. 51, pp. 1272-1296, 2023.
  8. Eftekhari, S., “A simple finite element procedure for free vibration of rectangular thin and thick plates”, Applied Mathematics and Computation, Vol. 401, pp. 126104, 2021.
  9. Pramod, A., Natarajan, S., Ferreira, A., Carrera, E., and Cinefra, M., “Static and free vibration analysis of cross-ply laminated plates using the Reissner-mixed variational theorem and the cell based smoothed finite element method”, European Journal of Mechanics-A/Solids, 62, pp. 14-21, 2017.
  10. Lucy, L. B., “A numerical approach to the testing of the fission hypothesis”, Astronomical Journal, Vol. 82, pp. 1013-1024, 1977.
  11. Gingold, R. A., and Monaghan, J. J., “Smoothed particle hydrodynamics: theory and application to non-spherical stars”, Monthly Notices of the Royal Astronomical Society, 181, pp. 375-389, 1977.
  12. Nayroles, B., Touzot, G., and Villon, P., “Generalizing the finite element method: diffuse approximation and diffuse elements”, Computational Mechanics, 10, pp. 307-318, 1992.
  13. Belytschko, T., Lu, Y. Y., and Gu, L. “Element‐free Galerkin methods”, International Journal for Numerical Methods in Engineering, Vol. 37, pp. 229-256, 1994.
  14. Fries, T. P., and Matthies, H., “Classification and overview of meshfree methods”, 2004.
  15. Boroomand, B., Soghrati, S., and Movahedian, B., “Exponential basis functions in solution of static and time harmonic elastic problems in a meshless style”, International Journal for Numerical Methods in Engineering, Vol. 81, pp. 971-1018, 2010.
  16. Boroomand, B., Bazazzadeh, S., and Zandi, S., “On the use of Laplace's equation for pressure and a mesh-free method for 3D simulation of nonlinear sloshing in tanks; Reply to the discussion”, Ocean Engineering, 134, pp. 176-177, 2017.
  17. Movahedian, B., and Boroomand, B., “The solution of direct and inverse transient heat conduction problems with layered materials using exponential basis functions”, International Journal of Thermal Sciences, 77, pp. 186-198, 2014.
  18. Shahbazi, M., Boroomand, B., and Soghrati, S., “A mesh-free method using exponential basis functions for laminates modeled by CLPT, FSDT and TSDT–Part I: Formulation”, Composite Structures, 93, pp. 3112-3119, 2011.
  19. Azhari, F., Boroomand, B., and Shahbazi, M., “Exponential Basis Functions in the Solution of Laminated Plates Using a Higher-Order Zig-Zag Theory”, Composite Structures, Vol. 105, pp. 398-407,
  20. Abdollahi, R., and Boroomand, B., “Nonlocal elasticity defined by Eringen’s integral model: introduction of a boundary layer method”, International journal of solids and structures, 51, pp. 1758-1780, 2014.
  21. Mossaiby, F., and Boroomand, B,. “Solution of Solid Mechanics’ Problems in Bounded and Unbounded Domains Using Semi-Analytic and Finite Element Methods”, D. Thesis, Isfahan university of technology, isfahan, 2010.
  22. Motamedi, A. R., and Boroomand, B., and Noormohammadi, N,. “On mechanical solution of composite plates and shells using smooth basis functions and mesh free methods”, D. Thesis, Isfahan University Of Technology, Isfahan, 2022.
  23. Soleimanifar, E., Boroomand, B., and Mossaiby, F., “A meshless method using local exponential basis functions with weak continuity up to a desired order”, Computational Mechanics, 53, pp. 1355-1374, 2014.
  24. Khdeir, A., and Reddy, J., “Analytical solutions of refined plate theories of cross-ply composite laminates”, 1991.
  25. Kobayashi, H., and Turvey, G. J., “Elastic small deflection analysis of annular sector Mindlin plates”, International Journal of Mechanical Sciences, 36, pp. 811-827, 1994.
  26. Noormohammadi, N., and Boroomand, B., “A fictitious domain method using equilibrated basis functions for harmonic and bi-harmonic problems in physics”, Journal of Computational Physics, Vol. 272, pp. 189-217, 2014.
  27. Ugural, A. C., “Stresses in plates and shells”, McGraw-Hill New York, vol. 16, 1981.

 

ارتقاء امنیت وب با وف ایرانی