شبیه‌سازی عددی جریان مافوق‌صوت گا‌ز طبیعی گذرنده از یک لاوال نازل به منظور امکان‌سنجی رطوبت‌گیری از آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده‌ی مهندسی مکانیک، دانشگاه گیلان

2 دانشکده‌ی مهندسی مکانیک، دانشگاه صنعتی اصفهان

3 گروه حرارت و سیالات دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان

چکیده

جداکننده‌ی مافوق‌صوت یک نازل همگرا-واگرا است که میعان و تغییر فاز در سرعت‌های بالاتر از صوت از خصوصیات عملکرد این دستگاه است. در این جداکننده جریان از حالت مادون‌صوت به مافوق‌صوت تبدیل شده و این تغییر رژیم جریان منجر به کاهش شدید دما و تشکیل مایع درون گاز می‌گردد. جریان سیال، انتقال جرم و حرارت در جداکننده‌های مافوق‌صوت به دلیل برهم‌کنش پیچیده جریان مافوق‌صوت و تغییر فاز به خوبی درک نشده‌است. در این پژوهش مدل‌سازی عددی چگالش بخار آب با هدف بررسی جریان سیال در جداکننده‌ی مافوق صوت انجام شده‌است. برای شبیه‌سازی جریان چند فازی از روش مخلوط بهره گرفته و مدل آشفتگی مورد استفاده،  k-ε استاندارد است. از مدل ریاضی تغییر فاز لی برای پیش‌بینی دقیق پدیده‌ی چگالش خود‌به‌خودی استفاده شده‌است. مسئله در حالت دوبعدی شبیه‌سازی و فشار ورودی و خروجی و دمای ورودی به عنوان شرایط مرزی و دیواره‌ی نازل آدیاباتیک فرض شده‌است. نتایج حاصل شده از مدل عددی به خوبی با داده‌های تجربی سازگار است. بر اساس تحلیل‌های انجام‌ شده، تغییر ‌فاز آب از بخار به مایع و رطوبت‌زدایی که هدف اصلی این پژوهش بوده‌‌است، با موفقیت حاصل شده‌است. هم چنین با 8/6 % افزایش دمای ورودی، کسر جرمی مایع بیش از 2 % کاهش یافت. با حدود 5/12 %  افزایش فشار ورودی در شرایط یکسان، بیشترین کسر جرمی مایع بیش از 19 % افزایش یافت. با در نظر گرفتن گاز طبیعی به عنوان سیال ورودی جداکننده کلیه‌ی بخار آب به مایع تبدیل شده و راندمان جداسازی بسیار بالا حاصل شده‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical simulation of supersonic natural gas flow passing through a Laval nozzle to assess the possibility of Dehumidification

نویسندگان [English]

  • Neda Zareei 1
  • Ramin Kouhikamali 2
  • Mohsen Emami 3
  • Seyed Amir Tayefi 2
  • Navid Sharifi 1
1 Faculty of Mechanical Engineering, University of Guilan
2 Faculty of Mechanical Engineering, Isfahan University of Technology
3 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

The Supersonic separator is a convergent-divergent nozzle with condensation and phase change at supersonic speeds. In this separator, the flow is converted from subsonic to supersonic, and this change in the flow regime leads to a sharp decrease in temperature and the formation of a liquid within the gas. Fluid flow, mass and heat transfer in supersonic separators are poorly understood due to the complex interaction of supersonic flow and phase change. In this study, numerical modeling of water vapor condensation has been carried out to investigate the fluid flow in the supersonic separator. The mixture method is used to simulate the multiphase flow and the implemented turbulence model is the standard k-ε. The Lee phase change and UDF mathematical models have been used to accurately predict the spontaneous condensation phenomenon. The problem is simulated in two-dimensional mode, the inlet and outlet pressures and the inlet temperatures are assumed as boundary conditions, and the nozzle wall is adiabatic. The results obtained from the numerical model are in good agreement with the experimental data. Based on the analysis, the phase change of water from vapor to liquid and the dehumidification, which was the main objective of this research, has been successfully achieved. Also, with an increase of 6.8% in the inlet temperature, the liquid mass fraction decreased by more than 2%. With an increase of about 12.5% in the inlet pressure under the same conditions, the maximum liquid mass fraction increased by more than 19%. Considering natural gas as the inlet fluid of the separator, all water vapor is converted to liquid and the separation efficiency is very high.

کلیدواژه‌ها [English]

  • supersonic separators
  • dehumidification
  • numerical simulation
  • laval nozzle
  1. Bazooyar, B., Jomekian, A., and Mirfasihi, S. , 2024. “Modeling and simulation of natural gas dehydration via supersonic separators”, Advances Natural Gas: Formation, Processing, and Applications. Volume 8: Natural Gas Process Modelling and Simulation,Elsevier, pp. 255-276, 2024.
  2. Shoghl, S. N., Naderifar, A., Farhadi, F., and Pazuki, G., “A novel strategy for comprehensive optimization of structural and operational parameters in a supersonic separator using computational fluid dynamics modeling”, Scientific Reports, Vol. 11, No. 1, p. 21850, 2021.
  3. Bian, J., Cao, X., Teng, L., Sun, Y., and Gao, S., “Effects of inlet parameters on the supersonic condensation and swirling characteristics of binary natural gas mixture”, Energy, Vol. 188, p.116082.2019.
  4. Teixeira, M., Arinelli, L. O., Medeiros, J. L., Araujo, O. Q. F., “Economic leverage affords post-combustion capture of 43% of carbon emissions: supersonic separators for methanol hydrate inhibitor recovery from raw natural gas and CO2 drying”, Journal of Environmental Management, 236, pp. 534-550, 2019.
  5. Arinelli, L. O., Teixeira, A. M., Medeiros, J. L., Araujo, O. Q. F., “Supersonic separator for cleaner offshore processing of natural gas with high carbon dioxide content: environmental and economic assessments”, Journal of Cleaner Production, Vol. 233, pp. 510-521, 2019.
  6. Brigagão, G. V., Arinelli, L. O., Medeiros, J. L., Araujo, O. Q. F., “A new concept of air prepurification unit for cryogenic separation: low pressure supersonic separator coupled to finishing adsorption”, Separation and Purification Technology, Vol. 215, pp. 173-189, 2019.
  7. Gyarmathy, G., Two-phase steam flow in turbines and separators, Hemisphere publ. Corp. Washington DC. 1976.
  8. Kouremenos, D. A., “The normal shock waves of real gases and the generalized isentropic exponents”, Forschung im Ingenieurwesen A, Vol. 52, No. 1, p. 2331, 1986.
  9. Bakhtar, F., and Zidi, K., “Nucleation phenomena in flowing high-pressure steam Part 2: theoretical analysis”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 204, No. 4, pp. 233-242, 1990.
  10. Hengwei, L., Zhongliang, L., Yongxun, F., Keyu, G. U., and Tingmin, Y. A. N., “Characteristics of a supersonic swirling dehydration system of natural gas”, Chinese Journal of Chemical Engineering, Vol. 13, No. 1, p. 9. 2005.
  11. Bao, L., Liu, Z., Liu, H., Jiang, W., Zhang, M., and Zhang, J., “Phase equilibrium calculation of multi-component gas separation of supersonic separator”, Science china technological sciences, Vol. 53, pp. 435-443, 2010.
  12. Ashtiani, A. J., Haghnejat, A., Sharif, M. and Fazli, A., “Investigation on new innovation in natural gas dehydration based on supersonic nozzle technology”, Indian Journal of Science and Technology, 8, No. S9, pp. 450-454, 2015.
  13. Esmaeili, A., “Supersonic separation of natural gas liquids by Twister technology”, Chemical Engineering Transactions, Vol. 52, No. 6, pp. 7-12, 2016.
  14. Niknam, P. H., Mortaheb, H. R., and Mokhtarani, B., 2018. Effects of fluid type and pressure order on performance of convergent–divergent nozzles: An efficiency model for supersonic separation. Asia‐Pacific”, Journal of Chemical Engineering, Vol. 13, No. 2, p.e2181.
  15. Bian, J., Jiang, W., Hou, D., Liu, Y., and Yang, J., “Condensation characteristics of CH4-CO2 mixture gas in a supersonic nozzle”, Powder Technology, Vol. 329, pp. 1-11, 2018.
  16. Shooshtari, S. R., and Shahsavand, A., “Reliable prediction of condensation rates for purification of natural gas via supersonic separators”, Separation and Purification Technology, Vol. 116, pp. 458-470, 2013.
  17. Shooshtari, S. R., and Shahsavand, A., ‟Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave”. Energy, Vol. 120, pp. 153-163, 2017.
  18. Ma, Q. F., Hu, D. P., Jiang, J. Z. and Qiu, Z. H., “A turbulent Eulerian multi-fluid model for homogeneous nucleation of water vapour in transonic flow”, International Journal of Computational Fluid Dynamics, Vol. 23, No. 3, pp. 221-231, 2009.
  19. Ma, Q. F., Hu, D. P., Jiang, J. Z., and Qiu, Z. H., ‟Numerical study of the spontaneous nucleation of self-rotational moist gas in a converging–diverging nozzle”, International Journal of Computational Fluid Dynamics, Vol. 24, No. 1-2, pp. 29-36, 2010.
  20. Niknam, P. H., Fiaschi, D., Mortaheb, H.R. and Mokhtarani, B., ‟Numerical investigation of multiphase flow in supersonic separator considering inner body effect”, Asia‐Pacific Journal of Chemical Engineering, Vol. 14, No. 6, p. e2380. 2019.
  21. Haghighi, M., Hawboldt, K. A., and Abdi, M. A., “Supersonic gas separators: Review of latest developments”,  Journal of Natural Gas Science and Engineering, 27, pp.109-121. 2015.
  22. Wen, C., Ding, H., and Yang, Y., “Optimisation study of a supersonic separator considering nonequilibrium condensation behaviour”, Energy Conversion and Management, Vol. 222, p.113210.
  23. Fluent, A. N. S. Y. S., 12.0, Theory Guide, 2022. https://orcid.org/0000-0002-8335-3121 .
  24. Wen, C., Cao, X., Yang, Y., and Feng, Y., “Prediction of mass flow rate in supersonic natural gas processing”, Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, Vol. 70, No. 6, pp. 1101-1109, 2015.
  25. Jiang, W., Liu, Z., Liu, H., Pang, H., and Bao, L., “Influences of friction drag on spontaneous condensation in water vapor supersonic flows”, Science in China Series E: Technological Sciences, Vol. 52, No. 9, pp. 2653-2659, 2009.
  26. Jassim, E., Abdi, M. A., and Muzychka, Y., “Computational fluid dynamics study for flow of natural gas through high-pressure supersonic nozzles: Part 1. Real gas effects and shockwave”, Petroleum Science and Technology, Vol. 26, No. 15, pp. 1757-1772, 2008.
  27. Arina, R., “Numerical simulation of near-critical fluids”, Applied numerical mathematics, Vol. 51, No. 4, pp. 409-426, 2004.
  28. Wen, C., Cao, X., and Yang, Y., “Swirling flow of natural gas in supersonic separators”, Chemical Engineering and Processing-Process Intensification, Vol. 50, No. 7, pp. 644-649, 2011.
  29. Zhang, G., Dykas, S., Majkut, M., Smołka, K., and Cai, X., “Experimental and numerical research on the effect of the inlet steam superheat degree on the spontaneous condensation in the IWSEP nozzle”, International Journal of Heat and Mass Transfer, Vol. 165, p. 120654, 2021.

ارتقاء امنیت وب با وف ایرانی