مدل‌سازی رشد دانه تحت گرادیان‌های حرارتی به روش میدان فاز در فرایند ساخت افزودنی ذوب لیزری انتخابی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران، 8415683111

2 آزمایشگاه سیستم‌های هوشمند برای پزشکی، دانشگاه استرالیای غربی، پرت، استرالیا

چکیده

مطالعه ریزساختار مواد از دهه‌های گذشته همواره از اهمیت بالایی برخوردار بوده است زیرا تغییرات ریزساختار موجب تغییرات خواص ماده می‌شود. رشد دانه نرمال به‌منظور کاهش انرژی مرزدانه‌ها صورت می‌گیرد. رشد دانه می‌تواند تحت تاثیر عوامل مختلفی از جمله تغییرات دما باشد. هدف از این پژوهش مدل‌سازی رشد دانه تحت گرادیان‌های حرارتی است. به‌منظور دستیابی به این هدف از روش میدان فاز استفاده شده است. ابتدا میدان حرارتی در یک فرایند ساخت افزودنی ذوب لیزری انتخابی به کمک زبان برنامه‌نویسی متلب پیاده‌سازی و توزیع دما در صفحه‌ای دو‌بعدی استخراج شد. منظور از صفحه دو‌بعدی صفحه‌ای است که یک بعد آن در راستای حرکت لیزر و بعد دیگر در راستای ضخامت ماده است. سپس سه نقطه در عمق‌های مختلف هندسه انتخاب شد و تغییرات دمای آن‌ها در طول زمان حل به‌دست آمد. داده‌های دما در هر گام زمانی، به عنوان ورودی مستقل برای شبیه‌سازی میدان فاز استفاده شد. جهت کوپل کردن مکانی شبیه‌سازی میدان حرارتی و میدان فاز از یک رویکرد چندمقیاسی استفاده شد. به‌گونه‌ای که یک حجمک نماینده تصادفی با طول مشخصه معین به نقاط مادی که تغییرات دمای آن‌ها در طول زمان استخراج شده است، اختصاص داده شد. سپس شبیه‌سازی میدان فاز برای سه حجمک نماینده در عمق‌های تعیین شده انجام و رشد دانه و حرکت مرزدانه‌ها در این سه حجمک نماینده با یکدیگر مقایسه شد. نتایج حاصل از شبیه‌سازی نشان می‌دهد در حجمک نماینده‌ای که دمای بیشتری را تجربه کرده است تحرک مرزدانه‌ها نیز بیشتر است. در نتیجه نرخ رشد دانه یا به‌عبارتی درشت شدن دانه بیشتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Phase-Field Modeling of Grain Growth Under Thermal Gradients in SLM Additive Manufacturing Process

نویسندگان [English]

  • Hossein Jafarzadeh 1
  • َAli Nasr Azadani 1
  • Mostafa Jamshidian 2
1 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 8415683111, Iran
2 Intelligent Systems for Medicine Laboratory, The University of Western Australia, Perth, Western Australia, Australia
چکیده [English]

The study of material microstructures is of great importance since changes in microstructure directly influence the material properties. Normal grain growth occurs to reduce grain boundary energy, but it can be affected by various factors, including temperature variations. This research aims to model grain growth under thermal gradients using the phase-field method. Initially, the thermal field in a selective laser melting (SLM) additive manufacturing process was simulated using MATLAB, and the temperature distribution in a two-dimensional plane was extracted. This two-dimensional plane represents a cross-section where one axis corresponds to the laser movement direction and the other to the material thickness. Subsequently, three points at different depths within the geometry were selected, and their temperature variations over time were calculated. The temperature data at each time step were used as independent input for the phase-field simulation. To spatially couple the thermal field simulation with the phase-field simulation, a multiscale approach was employed. In this approach, a randomly generated representative volume element (RVE) with a predefined characteristic length was assigned to material points whose temperature variations had been extracted over time. Phase-field simulations were then performed for three RVEs at the specified depths, and grain growth and grain boundary movement within these RVEs were compared. The simulation results indicate that the RVE experiencing higher temperatures exhibits greater grain boundary mobility. Consequently, the grain growth rate, or coarsening, is higher in such cases.

کلیدواژه‌ها [English]

  • Microstructure
  • Phase-field
  • Thermal field
  • Grain
  • Grain growth
  • Grain boundary
  1. Jamshidian, M., and Rabczuk, T., “Phase field modelling of stressed grain growth: analytical study and the effect of microstructural length scale”, Journal of Computational Physics, Vol. 261, pp. 23-35, 2014.
  2. Moelans, N., Blanpain, B., and Wollants, P., “An introduction to phase-field modeling of microstructure evolution”, Calphad, Vol. 32, No.2, pp. 268-94, 2008.
  3. Singer-Loginova, I., and Singer, H. M., “The phase field technique for modeling multiphase materials”. Reports on progress in physics, Vol. 71, No. 10, p. 106501. 2008.
  4. Allen, S. M., and Cahn, J. W., “A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening”, Acta metallurgica, Vol. 27, No. 6, pp. 1085-1095, 1979.
  5. Fan, D., and Chen, L. Q., “Computer simulation of grain growth using a continuum field model”, Acta Materialia, Vol. 45, No. 2, pp. 611-622. 1997.
  6. Steinbach, I., and Pezzolla, F., “A generalized field method for multiphase transformations using interface fields”, Physica D: Nonlinear Phenomena, Vol. 134, No. 4, pp. 385-393, 1999.
  7. Yang, M., Wang, L., and Yan, W., “Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening”, Npj Computational Materials, Vol. 7, No. 1, p. 56, 2021.
  8. Kim, S. G., Kim, D. I., Kim, W. T., and Park, Y. B., “Computer simulations of two-dimensional and three-dimensional ideal grain growth”, Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, Vol. 74, No. 6, p. 061605, 2006.
  9. Tonks, M., Millett, P., Cai, W., and Wolf, D., “Analysis of the elastic strain energy driving force for grain boundary migration using phase field simulation”, Scripta Materialia, Vol. 63, No. 11, pp. 1049-1052, 2010
  10. Thamburaja, P. and Jamshidian, M., “A multiscale Taylor model-based constitutive theory describing grain growth in polycrystalline cubic metals”, Journal of the Mechanics and Physics of Solids, Vol. 63, No.1, pp. 1-28, 2014.
  11. Tonks, M. R., Zhang, Y., Bai, X., and Millett, P. C., “Demonstrating the temperature gradient impact on grain growth in UO2 using the phase field method”, Materials Research Letters, Vol. 2, No. 1, pp. 23-28. 2014.
  12. Shi, Q., Gu, D., Xia, M., Cao, S., and Rong, T., “Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites”, Optics & Laser Technology, Vol. 84, pp. 9-22, 2016.
  13. Zhang, X. and Liao, Y., “A phase-field model for solid-state selective laser sintering of metallic materials” Powder technology, Vol. 339, pp. 677-685, 2018.
  14. Fu, CH., and Guo, Y. B., “3-dimensional finite element modeling of selective laser melting Ti-6Al-4V alloy” 25th Annual International Solid Freeform Fabrication Symposium, Austin, Texas, 2014.
  15. Kalidindi, S. R., Bronkhorst, C. A., and Anand L., “Crystallographic texture evolution in bulk deformation processing of FCC metals”, Journal of the Mechanics and Physics of Solids, Vol. 40, No. 3, pp. 537-569, 1992.
  16. Takaki, T., Hisakuni, Y., Hirouchi, T., Yamanaka, A., and Tomita, Y., “Multi-phase-field simulations for dynamic recrystallization”, Computational Materials Science, Vol. 45, No. 4, pp. 881-888, 2009.
  17. Moelans, N., “A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems”, Acta Materialia, Vol. 59, No. 3, pp. 1077-1086, 2011.
  18. Levitas, V. I., Jafarzadeh, H., Farrahi, G. H., and Javanbakht, M., “Thermodynamically consistent and scale-dependent phase field approach for crack propagation allowing for surface stresses”, International Journal of Plasticity, Vol. 111, pp. 1-35, 2018.
  19. Shojaiefard, M. H., Silani, M., Javanbakht, M., and Jafarzadeh, H., “Two-dimensional micromechanical analysis of fracture in human cortical bone tissue using the phase-field method”, Journal of Computational Methods in Engineering, Vol. 43, No. 2, pp. 143-161, 2025.
  20. Jafarzadeh, H., and Mansoori, H., “Phase field approach to mode-I fracture by introducing an eigen strain tensor: general theory”, Theoretical and Applied Fracture Mechanics, Vol. 108, p. 102628, 2020.
  21. Jafarzadeh, H., Farrahi, G. H., Levitas, V. I., Javanbakht, M., “Phase field theory for fracture at large strains including surface stresses”, International Journal of Engineering Science, Vol. 178, p. 103732, 2022.
  22. Jafarzadeh, H., Shchyglo, O., Steinbach, I., “Multi-phase-field approach to fracture demonstrating the role of solid-solid interface energy on crack propagation”, International Journal of Fracture, Vol. 245, No. 1, pp. 75-87, 2024.
  23. Jafarzadeh, H., Levitas, V. I., Farrahi, GH., Javanbakht, M., “Phase field approach for nanoscale interactions between crack propagation and phase transformation”, Nanoscale, Vol. 11, No. 46, pp. 22243-22247, 2019.
  24. Rahbar, H., Javanbakht, M., Ziaei-Rad, S., Reali, A., Jafarzadeh, H., “Finite element analysis of coupled phase-field and thermoelasticity equations at large strains for martensitic phase transformations based on implicit and explicit time discretization schemes”, Mechanics of Advanced Materials and Structures, Vol. 29, No. 17, pp. 2531-2547. 2022.

25. Amirian, B., Jafarzadeh, H., Abali, B. E., Reali A, Hogan,  J. D., “Thermodynamically-consistent derivation and computation of twinning and fracture in brittle materials by means of phase-field approaches in the finite element method”, International Journal of Solids and Structures, Vol. 252, p. 111789, 2022.

ارتقاء امنیت وب با وف ایرانی