مدل‌سازی عددی انتقال تابش در راکتور فوتوکاتالیستی نت‌میکس با استفاده از روش ردیابی پرتو همیلتونی در کامسول

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان

چکیده

در این مقاله، به‌منظور بهینه‌سازی توزیع شدت نور بر سطح فوتوکاتالیستی یک راکتور NETmix، تأثیر پنج پارامتر کلیدی شامل زاویه تابش، توان منبع نوری، نوع آرایش، تعداد منابع نور، و فاصله منبع تا سطح کاتالیست به‌صورت عددی مورد بررسی قرار گرفت. هندسه دقیق راکتور با استفاده از ماژول Ray Optics در نرم‌افزار کامسول مدل‌سازی شد و توزیع شدت تابش برای ۲۵ ترکیب مختلف از این پارامترها شبیه‌سازی گردید. نتایج کیفی و کمی حاصل از کانتورهای تابش و میانگین شدت نور نشان داد که آرایش شش‌ضلعی یکنواخت‌ترین توزیع نور را فراهم می‌کند، در حالی که ترکیب خاصی از پارامترها شامل زاویه ۱۰۰ درجه، توان ۱۰ وات، آرایش مربعی، تعداد ۷۲ ال‌ای‌دی و فاصله ۱۰ میلی‌متر، بیشترین مقدار میانگین تابش به میزان ۸۹۹٫۹ وات بر متر مربع را ایجاد کرده است. تحلیل نتایج نشان داد که انتخاب ترکیب بهینه‌ای از پارامترهای نوری، نقش تعیین‌کننده‌ای در بهبود عملکرد فوتوکاتالیستی دارد؛ به‌طوری‌که بهینه‌سازی تنها یک متغیر، بدون در نظر گرفتن تأثیر متقابل سایر پارامترها، نمی‌تواند به نتایج مطلوب منجر شود. این پژوهش با ارائه یک چارچوب عددی جامع برای تحلیل توزیع تابش در راکتورهای فوتوکاتالیستی، می‌تواند به‌عنوان مبنایی برای طراحی مؤثر سیستم‌های نوری در کاربردهایی نظیر تصفیه، سنتز و فرایندهای فتوشیمیایی مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Modeling of Radiative Transfer in NETmix Photocatalytic Reactors Using Hamiltonian-Based Ray Tracing in COMSOL

نویسندگان [English]

  • Ahmad Hamzavi
  • Mohsen Emami
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

In this paper, a numerical study was carried out to optimize the light intensity distribution over the photocatalytic surface of a NETmix reactor by examining the influence of five key parameters: irradiation angle, light source power, arrangement type, number of sources, and the distance between the sources and the catalyst surface. The exact geometry of the reactor was modeled using the Ray Optics module in COMSOL Multiphysics, and the light intensity distribution was simulated for 25 different combinations of these parameters. Qualitative and quantitative results from radiation contours and average light intensity showed that a hexagonal arrangement provides the most uniform light distribution, while specific parameter values—including an angle of 100°, power of 10 W, square arrangement, 72 LEDs, and a distance of 10 mm—produced the highest average irradiance of 899.9 W/m². Analysis of the results indicated that selecting the optimal combination of optical parameters plays a decisive role in enhancing photocatalytic performance; optimizing only one variable without considering others will not yield satisfactory results. This study can serve as a foundation for effective optical design in purification, synthesis, and photochemical processes by providing a comprehensive numerical framework for analyzing light distribution in photocatalytic reactors.

کلیدواژه‌ها [English]

  • Photocatalytic Reactor
  • Radiative Transfer
  • Ray Tracing Method
  • Wavefront Propagation
  • Hamiltonian Optics
  1. Hashimoto, K., Irie, H., and Fujishima, A., “TiO2 photocatalysis: a historical overview and future prospects”, Japanese Journal of Applied Physics, Vol. 44, No. 12R, p. 8269, 2005.
  2. Chen, X. and Mao, S. S., “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications”, Chemical Reviews, Vol. 107, No. 7, pp. 2891-2959, 2007.
  3. Kudo, A. and Miseki, Y., “Heterogeneous photocatalyst materials for water splitting”, Chemical Society Reviews, Vol. 38, No. 1, pp. 253-278, 2009.
  4. Zhang, J. and Nosaka, Y., “Mechanism of the OH radical generation in photocatalysis with TiO2 of different crystalline types”, The Journal of Physical Chemistry C, Vol. 118, No. 20, pp. 10824-10832, 2014.
  5. Low, J., Yu, J., Jaroniec, M., Wageh, S., and Al-Ghamdi, A. A., “Heterojunction photocatalysts”, Advanced Materials, Vol. 29, No. 20, p. 1601694, 2017.
  6. Wang, Q., and Domen, K., “Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies”, Chemical Reviews, Vol. 120, No. 2, pp. 919-985, 2019.
  7. Coronado, J. M., “A historical introduction to photocatalysis”, in Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, pp. 1-4, London: Springer London, 2013.
  8. Wagner, F. T., and Somorjai, G. A., “Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals”, Journal of the American Chemical Society, Vol. 102, No. 17, pp. 5494-5502, 1980.
  9. Tee, S. Y., Win, K. Y., Teo, W. S., Koh, L. D., Liu, S. H., Teng, C. P., and Han, M. Y., “Recent progress in energy-driven water splitting”, Advanced Science, Vol. 4, No. 5, p. 1600337, 2017.
  10. Lasek, J., Yu, Y.-H., and Wu, J. C. S., “Removal of NOx by photocatalytic processes”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 14, pp. 29-52, 2013.
  11. Sun, Y., Zwolińska, E., and Chmielewski, A. G., “Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review”, Critical Reviews in Environmental Science and Technology, Vol. 46, No. 2, pp. 119-142, 2016.
  12. Wang, S., Ang, H. M., and Tade, M. O., “Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art”, Environment International, Vol. 33, No. 5, pp. 694-705, 2007.
  13. Peral, J., Domènech, X., and Ollis, D. F., “Heterogeneous photocatalysis for purification, decontamination and deodorization of air”, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental AND Clean Technology, Vol. 70, No. 2, pp. 117-140, 1997.
  14. Fujishima, A., and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, No. 5358, pp. 37-38, 1972.
  15. Peral, J. and Ollis, D. F., “Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation”, Journal of Catalysis, 136, No. 2, pp. 554-565, 1992.
  16. Zhao, J., and Yang, X., “Photocatalytic oxidation for indoor air purification: a literature review”, Building and Environment, Vol. 38, No. 5, pp. 645-654, 2003.
  17. He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S., and Hao, Z., “Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources”, Chemical Reviews, Vol. 119, No. 7, pp. 4471-4568, 2019.
  18. Chen, R., Li, J., Wang, H., Chen, P., Sun ,Y., Zhou, Y., and Dong, F., “Photocatalytic reaction mechanisms at a gas–solid interface for typical air pollutant decomposition”, Journal of Materials Chemistry A, Vol. 9, No. 36, pp. 20184-20210, 2021.
  19. Shah, V., Jacob, D. J., Li, K., Silvern, R. F., Zhai, S., Liu, M., Lin, J., and Zhang, Q., “Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China”, Atmospheric Chemistry and Physics, Vol. 20, No. 3, pp. 1483-1495, 2020.
  20. Wang, J., Li, J., Ye, J., Zhao, J., Wu, Y., Hu, J., Liu, D., et al., “Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze”, Nature Communications, Vol. 11, No. 1, p. 2844, 2020.
  21. Yang, J., Wang, X., Wang, H., Dong, F., and Zhu, M., “CsPbBr3 perovskite nanocrystal: A robust photocatalyst for realizing NO abatement”, ACS ES&T Engineering, Vol. 1, No. 6, pp. 1021-1027, 2021.
  22. Nguyen, V.-H., Nguyen, B.-S., Huang, C.-W., Le, T.-T., Nguyen, C. C., Nhi Le, T. T., Heo, D., et al., “Photocatalytic NOx abatement: Recent advances and emerging trends in the development of photocatalysts”, Journal of Cleaner Production, Vol. 270, p. 121912, 2020.
  23. Tahir, M. and Saidina Amin, N. A., “Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor”, Chemical Engineering Journal, Vol. 230, pp. 314-327, 2013.
  24. Singh, M., Salvadó-Estivill, I., and Li Puma, G., “Radiation field optimization in photocatalytic monolith reactors for air treatment”, AIChE Journal, Vol. 53, No. 3, pp. 678-686, 2007.
  25. Herrmann, J. M., “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants”, Catalysis Today, Vol. 53, No. 1, pp. 115-129, 1999.
  26. Ollis, D. F., “Photocatalytic purification and remediation of contaminated air and water”, Comptes Rendus de lAcademie des Sciences Series IIC Chemistry, Vol. 3, No. 6, pp. 405-411, 2000.
  27. Mills, A., and Le Hunte, S., “An overview of semiconductor photocatalysis”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 108, No. 1, pp. 1-35, 1997.
  28. Marinho, B.A., Cristovao, R.O., Djellabi, R., Caseiro, A., Miranda, S.M., Loureiro, J.M., Boaventura, R.A., Dias, M.M., Lopes, J.C.B. and Vilar, V.J., “Strategies to reduce mass and photon transfer limitations in heterogeneous photocatalytic processes: Hexavalent chromium reduction studies,” Journal of Environmental Management, Vol. 217, pp. 555-564, 2018.
  29. Kayahan, E., Urbani, D., Dambruoso, P., Massi, A., Braeken, L., Van Gerven, T. and Leblebici, M.E., “Overcoming mass and photon transfer limitations in a scalable reactor: Oxidation in an aerosol photoreactor,” Chemical Engineering Journal, Vol. 408, p. 127357, 2021.
  30. Pan, L., Zhang, M., Mei, H., Yao, L., Jin, Z., Liu, H., Zhou, S., Yao, Z., Zhu, G., Cheng, L. and Zhang, L., “3D bionic reactor optimizes photon and mass transfer by expanding reaction space to enhance photocatalytic CO₂ reduction,” Separation and Purification Technology, Vol. 301, p. 121974, 2022.
  31. Enesca, A., “The influence of photocatalytic reactors design and operating parameters on the wastewater organic pollutants removal—a mini-review,” Catalysts, Vol. 11, No. 5, p. 556, 2021.
  32. Ahmed, S., Rasul, M.G., Sattar, M.A. and Jahirul, M.I., “Phenol degradation of waste and stormwater on a flat plate photocatalytic reactor with TiO₂ on glass slide: An experimental and modelling investigation,” Journal of Water Process Engineering, Vol. 47, p. 102769, 2022.
  33. Chaudhuri, A., Zondag, S.D., Schuurmans, J.H., van der Schaaf, J. and Noël, T., “Scale-up of a heterogeneous photocatalytic degradation using a photochemical rotor–stator spinning disk reactor,” Organic Process Research & Development, Vol. 26, No. 4, pp. 1279-1288, 2022.
  34. Llamas, J.D., Lesage, F. and Wild, G., “Influence of gas flow rate on liquid distribution in trickle-beds using perforated plates as liquid distributors,” Industrial & Engineering Chemistry Research, Vol. 48, No. 1, pp. 7-11, 2009.
  35. Marinho, B.A., Martin de Vidales, M.J., Mazur, L.P., Paulista, L., Cristóvão, R.O., Mayer, D.A., Loureiro, J.M., Boaventura, R.A., Dias, M.M., Lopes, J.C.B. and Vilar, V.J., “Application of a micro-meso-structured reactor (NETmix) to promote photochemical UVC/H₂O₂ processes–oxidation of As(III) to As(V),” Photochemical & Photobiological Sciences, Vol. 17, No. 9, pp. 1179-1188, 2018.
  36. Sathyanarayana, R., Kumar, V., Pujar, G.H., Poojary, B., Shankar, M.K. and Yallappa, S., “Hydroxy-benzimidazoles as blue-green emitters: Synthesis, structural and DFT studies,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 401, p. 112751, 2020.
  37. Miranda, S.M., Matiazzo, T., Padoin, N., Soares, C., Silva, T.F. and Vilar, V.J., “Photocatalytic oxidation of n-decane in a NETmix photoreactor: Insights into the reactor geometry and illumination mechanism,” Chemical Engineering Journal, Vol. 497, p. 154705, 2024.
  38. Matos, J., Santos, R.J., Dias, M.M. and Lopes, J.C.B., “Mixing in the NETmix reactor,” Frontiers in Chemical Engineering, Vol. 3, p. 771476, 2021.
  39. Santos, S. G., et al., “A step forward on NETmix reactor for heterogeneous photocatalysis: kinetic modeling of As (III) oxidation”, Chemical Engineering Journal, 405, p. 126612, 2021.
  40. Santos, S. G., et al., “Intensifying heterogeneous TiO2 photocatalysis for bromate reduction using the NETmix photoreactor”, Science of the Total Environment, 664, pp. 805-816, 2019.
  41. Pelzers, R.S., Yu, Q.L. and Mangkuto, R.A., “Radiation modeling of a photo-reactor using a backward ray-tracing method: an insight into indoor photocatalytic oxidation,” Environmental Science and Pollution Research, Vol. 21, No. 19, pp. 11142-11154, 2014.
  42. Rastgaran, A., Fatoorehchi, H., Khallaghi, N., Larimi, A. and Borhani, T.N., “Modelling of photocatalytic CO₂ reduction into value-added products in a packed bed photoreactor using the ray tracing method,” Carbon Capture Science & Technology, Vol. 8, p. 100118, 2023.
  43. Schneider, J., et al., “Understanding TiO2 photocatalysis: Mechanisms and materials,” Chemical Reviews, Vol. 114, No. 19, pp. 9919-9986, 2014.
  44. Matiazzo, T., Ramaswamy, K., Vilar, V. J. P., Padoin, N., and Soares, C., “Radiation field modeling of the NETmix milli-photocatalytic reactor: effect of LEDs position over the reactor window”, Chemical Engineering Journal, Vol. 429, p. 131670, 2022.
  45. COMSOL, “The Ray-Tracing Method in COMSOL Multiphysics”, COMSOL Blog.
  46. COMSOL, “The Ray-Tracing Method in COMSOL Multiphysics”, COMSOL Support.
  47. COMSOL, “Snell’s Law and Refraction”, COMSOL Documentation.
  48. COMSOL, “Time-stepping Methods in Ray Tracing”, COMSOL Documentation.
  49. R. DeVore, “Refractive indices of rutile and sphalerite”, Journal of the Optical Society of America, Vol. 41, No. 6, pp. 416-419, 1951.
  50. da Costa Filho, B. M., Araujo, A. L., Padrão, S. P., Boaventura, R. A., Dias, M. M., Lopes, J. C. B., and Vilar, V. J. P., “Effect of catalyst coated surface, illumination mechanism and light source in heterogeneous TiO2 photocatalysis using a mili-photoreactor for n-decane oxidation at gas phase”, Chemical Engineering Journal, Vol. 366, pp. 560-568, 2019.

ارتقاء امنیت وب با وف ایرانی