نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشکده ی مهندسی مکانیک، دانشگاه صنعتی اصقهان، اصفهان، ایران، صندوق پستی 8415683111.
2 دانشکدهی مهندسی مکانیک، دانشگاه صنعتی اصقهان، اصفهان، ایران، صندوق پستی 8415683111.
3 - دانشکدهی مهندسی مکانیک، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران - گروه مهندسی مکانیک، دانشگاه صنعتی قم، قم، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Transcatheter aortic valve implantation (TAVI) has revolutionized the treatment of aortic stenosis, offering a minimally invasive alternative to traditional open-heart surgery. Despite its advantages, TAVI procedures are still associated with substantial complications, including embolism, paravalvular leak, aortic root rupture, and prosthesis migration. To enhance procedural safety and efficacy, advanced computational simulations are increasingly being employed as powerful tools to aid clinicians in pre-operative planning and mitigate potential risks. In this paper, a patient-specific approach was utilized to reconstruct a high-fidelity 3D model of a patient's heart from CT scan images using Mimics software. To achieve this, three distinct finite element simulations were performed to model the TAVI implantation process under various conditions; a healthy valve without calcification, and valves with calcified plaques exhibiting two different mechanical properties. The simulation results demonstrated that the presence and specific mechanical characteristics of calcified plaques within the native aortic valve profoundly impact the stress distribution and structural deformations of both the host cardiac tissue and the prosthetic valve. Specifically, calcified lesions significantly altered the biomechanical environment, leading to localized stress concentrations and altered leaflet coaptation. This research underscores the critical importance of accurately incorporating the mechanical properties of calcified plaques into computational models for precise prediction of implanted prosthetic valve behavior and optimization of TAVI outcomes. These findings contribute valuable insights for personalized procedural planning and the development of next-generation TAVI devices.
کلیدواژهها [English]
9.Finotello, A., Gorla, R., Brambilla, N., Bedogni, F., Auricchio, F., and Morganti, S. Finite element analysis of transcatheter aortic valve implantation: Insights on the modelling of self-expandable devices. J. Mech. Behav. Biomed. Mater. 2021. 123:104772. https://doi.org/10.1016/j.jmbbm.2021.104772.
10.Cataloglu, A., Clark, R. E., and Gould, P. L. Stress analysis of aortic valve leaflets with smoothed geometrical data. J. Biomech. 1977. 10(3):153–158. https://doi.org/10.1016/0021-9290(77)90053-7.
11.Martin, C., and Sun, W. Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: a fatigue simulation study. J. Biomech. 2015. 48(12): 3026–3034. https://doi.org/10.1016/j.jbiomech.2015.07.031.
12.Xuan, Y., Krishnan, K., Ye, J., Dvir, D., M. Guccione, J., GE, L., et al. Stent and leaflet stresses in 29-mm second-generation balloon expandable transcatheter aortic valve. Ann. Thorac. Surg. 2017. 104(3): 773–781. https://doi.org/10.1016/j.athoracsur.2017.01.064.
13.Li, K., and Sun, W. Simulated transcatheter aortic valve deformation: A parametric study on the impact of leaflet geometry on valve peak stress. Inter. J. Num. Method. Biomed. Eng. 2017. 33(3): e02814. https://doi.org/10.1002/cnm.2814.
16.Carbonaro, D., Gallo, D., Morbiducci, U., Audenino, A., and Chiastra, C. In silico biomechanical design of the metal frame of transcatheter aortic valves: multiobjective shape and cross-sectional size optimization. Struct. Multidiscip. Optim. 2021. 64: 1825–1842. https://doi.org/10.1007/s00158-021-02944-w.
17.Morganti, S., Conti, M., Aiello, M., Valentini, A., Reali, A., and Auricchio, F. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases. J. Biomech. 2014. 47(11): 2547-2555. https://doi.org/10.1016/j.jbiomech.2014.06.007201 4.
18.Wang, Q., Kodali, S., Primiano, C., and Sun, W. Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomech. Model. Mechanobiol. 2015.14(1): 29–38. https://doi.org/10.1007/s10237-014-0583-7.
20.Nematzadeh, F., and Mostaan, H. Numerical investigation of the mechanical performance of thoracic aortic aneursysm (TAA) NiTi stent. Sci. Iranica B. 2020. 5(27):2382-2390. https://doi.org/ 10.24200/sci.2019.51077.1989.
25.Tzamtzis, S., Viquerat, J., Yap, J., Mullen, M. J., and Burriesci, G. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 2013. 35(1):125–130. https://doi.org/10.1016/j.medengphy.2012.04.009.
26.Shrivastava, S. Medical device materials. Proceedings from the Materials and Processes for Medical Devices Conferences; 2003 Sep 8-10; Anaheim, California. Asm International; 2004.Available from: https://libcatalog.usc.edu/discovery/fulldisplay.
27.Asgari, S. Anomalous plastic behavior of fine-grained MP35N alloy during room temperature tensile testing. J. Mater. Process. Technol. 2004.155(1):1905–1911. https://doi.org/10.1016/j.jmatprotec.2004.04.280.
28.Bailey J. Implications for leaflet behaviour in heavily calcified patient-specific aortic roots: simulation of transcatheter aortic valve implantation. Thesis, University of Southampton; 2015.
29.Smith, C. R., Leon, M. B., Miller, D. C., Moses, J. W., Svenssen, L. G., and Tuzcu, E. M. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011. 364(23): 2187–2198. https://doi.org/10.1056/NEJMoa1103510.
31.Martin, C., Pham, T., and Sun, W. Significant differences in the material properties between aged human and porcine aortic tissues. Eur. J. Cardio-Thora. Surg. 2011. 40(1): 28–34. https://doi.org/10.1016/j.ejcts.2010.08.056.
32.ECHONOMY. Tools for Echocardiographic Calculations [Internet]. 2019 [cited 2019 Sep 6]. Available from: http://saric.us/echonomy/CoreValve%20Sizing.htm.
33.Bianchi, M. Numerical Modeling of Transcatheter Aortic Valve Replacement: A Patient-specific Approach to Minimize Clinical Complications. State University of New York at Stony Brook; 2019.
34.Lin, S., Akula, P., and Gu, L. Mechanical performance of bovine pericardial bioprosthetic valves. J. Med. Devices. 2013. 3(7): 030926. https://doi.org/10.1115/1.4024346.