تأثیر ویژگی‌های مادی پلاک کلسیفیه بر عملکرد تاوی: تحلیل اجزای محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده ی مهندسی مکانیک، دانشگاه صنعتی اصقهان، اصفهان، ایران، صندوق پستی 8415683111.

2 دانشکده‌ی مهندسی مکانیک، دانشگاه صنعتی اصقهان، اصفهان، ایران، صندوق پستی 8415683111.

3 - دانشکده‌ی مهندسی مکانیک، دانشگاه صنعتی جندی شاپور دزفول، دزفول، ایران - گروه مهندسی مکانیک، دانشگاه صنعتی قم، قم، ایران

چکیده

درمان تنگی دریچه‌ی آئورت با استفاده از کاشت دریچه آئورت ترنسکتتر (تاوی) به‌عنوان روش جایگزین کم‌تهاجمی برای جراحی قلب باز مطرح شده است. با این حال، عوارضی مانند آمبولی، نشت پاراوالویولار، پارگی ریشه آئورت و جابه‌جایی پروتز، هم‌چنان چالش‌های قابل توجهی به‌شمار می‌روند. شبیه‌سازی‌های محاسباتی پیشرفته ابزاری قدرتمند برای حمایت از پزشکان در برنامه‌ریزی روش تاوی و کاهش عوارض احتمالی ارائه می‌دهند. در این مقاله، برای بررسی تأثیر پلاک‌های کلسیفیه بر عملکرد زیست-مکانیکی ایمپلنت تاوی، یک مدل سه‌بعدی از قلب بیمار بر اساس تصاویر سی‌تی‌اسکن و با به‌کارگیری نرم‌افزار میمیکس بازسازی شد. سپس برای مدل‌سازی عملکرد ایمپلنت تاوی در شرایط مختلف، سه شبیه‌سازی جداگانه‌ی اجزای محدود انجام شد. یک شبیه‌سازی برای دریچه‌ی سالم بدون کلسیفیکاسیون و دو دریچه نیز با پلاک‌های کلسیفیه، با دو گونه‌ی متفاوت از ویژگی‌های مکانیکی، انجام شد. نتایج شبیه‌سازی نشان داد که وجود و ویژگی‌های مکانیکی خاص پلاک‌های کلسیفیه در دریچه‌ی آئورت بومی، بر توزیع تنش و تغییرشکل‌های ساختاری بافت قلبی میزبان و دریچه‌ی پروتزی تأثیر می‌گذارد. به‌ویژه، ضایعات کلسیفیه محیط زیست‌مکانیکی را به‌طور قابل توجهی تغییر داده و به تمرکز تنش‌های موضعی و تغییر در هم‌پوشانی برگچه‌ها می‌انجامد. این پژوهش بر اهمیت گنجاندن دقیق خواص مکانیکی پلاک‌های کلسیفیه در مدل‌های محاسباتی برای پیش‌بینی دقیق رفتار دریچه­ی پروتزی کاشته شده و بهینه‌سازی نتایج تاوی تأکید می‌کند. این یافته‌ها بینش‌های ارزشمندی را برای برنامه‌ریزی شخصی‌سازی شده، برای انجام عمل و توسعه‌ی نسل بعدی دستگاه‌های تاوی ارائه می‌دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Impact of Calcified Plaque Material Properties on TAVI Performance: A Finite Element Analysis

نویسندگان [English]

  • Mohammad Asadi 1
  • Mehdi Salmani Tehrani 2
  • Zahra Matin Ghahfarokhi 3
1 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, P. O. Box: 8415683111, Iran
2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, P. O. Box: 8415683111, Iran
3 -Department of Mechanical Engineering, Jundi-Shapur University of Technology, Dezful, Iran. - Department of Mechanical Engineering, Qom University of Technology, Qom, Iran
چکیده [English]

Transcatheter aortic valve implantation (TAVI) has revolutionized the treatment of aortic stenosis, offering a minimally invasive alternative to traditional open-heart surgery. Despite its advantages, TAVI procedures are still associated with substantial complications, including embolism, paravalvular leak, aortic root rupture, and prosthesis migration. To enhance procedural safety and efficacy, advanced computational simulations are increasingly being employed as powerful tools to aid clinicians in pre-operative planning and mitigate potential risks. In this paper, a patient-specific approach was utilized to reconstruct a high-fidelity 3D model of a patient's heart from CT scan images using Mimics software. To achieve this, three distinct finite element simulations were performed to model the TAVI implantation process under various conditions; a healthy valve without calcification, and valves with calcified plaques exhibiting two different mechanical properties. The simulation results demonstrated that the presence and specific mechanical characteristics of calcified plaques within the native aortic valve profoundly impact the stress distribution and structural deformations of both the host cardiac tissue and the prosthetic valve. Specifically, calcified lesions significantly altered the biomechanical environment, leading to localized stress concentrations and altered leaflet coaptation. This research underscores the critical importance of accurately incorporating the mechanical properties of calcified plaques into computational models for precise prediction of implanted prosthetic valve behavior and optimization of TAVI outcomes. These findings contribute valuable insights for personalized procedural planning and the development of next-generation TAVI devices.

کلیدواژه‌ها [English]

  • Aortic Stenosis
  • Transcatheter Aortic Valve Implantation (TAVI)
  • Finite Element Simulation
  • Calcified Plaques
  • Native Aortic Aalve Leaflets
  1. 1. Levine G. N. Illustrated Guide to Cardiovascular Disease. JP Medical Ltd; 2016.
  2. Schoen, F. J., and Levy, R. J. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Sur. 2005; 79(3): 1072–1080. https://doi.org/10.1016/j.athoracsur.2004.06.033.
  3. Organization, W. H. cardiovascular diseases (CVDs) Geneva: World Health Organization; 2021.
  4. Swift, S. L., Puehler, T., Misso, K., Lang, S. H., Forbes, C., Kleijnen, J., et al. Transcatheter aortic valve implantation versus surgical aortic valve replacement in patients with severe aortic stenosis: a systematic review and meta-analysis Transcatheter aortic valve implantation versus surgical aortic valve replacement in patients with severe aortic stenosis: a systematic review and meta-analysis. B.M.J. Open. 2021; 12(11): e054222. https://doi.org/10.1136/bmjopen-2021-054222.
  5. Cleveland Clinic [Internet]. 2020 [ cited 2020 Aug 7]. Available from: https://my.clevelandclinic.org.
  6. Stouffer, G., Runge, M. S., Patterson, C., and Rossi, J. S. Netter’s Cardiology E-Book. Elsevier Health Sciences; 2018.
  7. Carbonaro, D., Zambon, S., Corti, A., Gallo, D., Morbiducci, U., L Audenino, A., et al. Impact of nickel–titanium super-elastic material properties on the mechanical performance of self-expandable transcatheter aortic valves. J. Mech. Behav. Biomed. Mater. 2023.138: 105623. https://doi.org/10.1016/j.jmbbm.2022.105623.
  8. Berti, F., Bridio, S., Luraghi, G., Pant, S., Allegretti, D., Pennati, G., et al. Reliable numerical models of nickel-titanium stents: how to deduce the specific material properties from testing real devices. Ann. Biomed. Eng. 2022. 50: 467–481. https://doi.org/10.1007/s10439-022-02932-1.

9.Finotello, A., Gorla, R., Brambilla, N., Bedogni, F., Auricchio, F., and Morganti, S. Finite element analysis of transcatheter aortic valve implantation: Insights on the modelling of self-expandable devices. J. Mech. Behav. Biomed. Mater. 2021. 123:104772. https://doi.org/10.1016/j.jmbbm.2021.104772.

10.Cataloglu, A., Clark, R. E., and Gould, P. L. Stress analysis of aortic valve leaflets with smoothed geometrical data. J. Biomech. 1977. 10(3):153–158. https://doi.org/10.1016/0021-9290(77)90053-7.

11.Martin, C., and Sun, W. Comparison of transcatheter aortic valve and surgical bioprosthetic valve durability: a fatigue simulation study. J. Biomech. 2015. 48(12): 3026–3034. https://doi.org/10.1016/j.jbiomech.2015.07.031.

12.Xuan, Y., Krishnan, K., Ye, J., Dvir, D., M. Guccione, J., GE, L., et al. Stent and leaflet stresses in 29-mm second-generation balloon expandable transcatheter aortic valve. Ann. Thorac. Surg.  2017. 104(3): 773–781. https://doi.org/10.1016/j.athoracsur.2017.01.064.

13.Li, K., and Sun, W. Simulated transcatheter aortic valve deformation: A parametric study on the impact of leaflet geometry on valve peak stress. Inter. J. Num. Method. Biomed. Eng. 2017. 33(3): e02814. https://doi.org/10.1002/cnm.2814.

  1. Barati, S., Fatouraee, N., Nabaei, M., Berti, F., Petrini, L., Migliavacca, F., et al. A computational optimization study of a self-expandable transcatheter aortic valve. Comput. Biol. Med. 2021. 139: 104942. https://doi.org/10.1016/j.compbiomed.2021.104942.
  2. Barati, S., Fatouraee, N., Nabaei, M., Petrini, L., Migliavacca, F., Luraghi, G., et al. Patient-specific multi-scale design optimization of transcatheter aortic valve stents. Comput. Methods and Programs Biomed. 2022. 221: 106912. https://doi.org/10.1016/j.cmpb.2022.106912.

16.Carbonaro, D., Gallo, D., Morbiducci, U., Audenino, A., and Chiastra, C. In silico biomechanical design of the metal frame of transcatheter aortic valves: multiobjective shape and cross-sectional size optimization. Struct. Multidiscip. Optim.  2021. 64: 1825–1842. https://doi.org/10.1007/s00158-021-02944-w.

17.Morganti, S., Conti, M., Aiello, M., Valentini, A., Reali, A., and Auricchio, F. Simulation of transcatheter aortic valve implantation through patient-specific finite element analysis: two clinical cases. J. Biomech. 2014. 47(11): 2547-2555. https://doi.org/10.1016/j.jbiomech.2014.06.007201 4.

18.Wang, Q., Kodali, S., Primiano, C., and Sun, W. Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomech. Model. Mechanobiol. 2015.14(1): 29–38. https://doi.org/10.1007/s10237-014-0583-7.

  1. Sturla, F., Ronzoni, M., Vitali, M., Dimasi, A., Vismara, R., Preston-Maher, G., et al. Impact of different aortic valve calcification patterns on the outcome of transcatheter aortic valve implantation: a finite element study. J. Biomech. 2016. 49(12): 2520–2530. https://doi.org/10.1016/j.jbiomech.2016.03.036.

20.Nematzadeh, F., and Mostaan, H. Numerical investigation of the mechanical performance of thoracic aortic aneursysm (TAA) NiTi stent. Sci. Iranica B. 2020. 5(27):2382-2390. https://doi.org/ 10.24200/sci.2019.51077.1989.

  1. Finazzi, V., Berti, F., Guillory, R. J., Petrini, L., Previtali, B., and Demir, A. Patient-specific cardiovascular superelastic NiTi stents produced by laser powder bed fusion. Procedia CIRP, 2022. 110(C): 244-248. http://doi.org/10.1016/j.procir.2022.06.044.
  2. Tiyerili, V., Sötemann, D., Grothusen, C., Eckel, C., Becher, M. U., Blumenstein, J., et al. Latest advances in transcatheter aortic valve implantation. Surg. Technol. Int. 2022. 40: 1478. https://doi.org/10.52198/21.STI.40.CV1478.
  3. Pasta, S., Cannata, S., Gentile, G., D. Diuseppe, M.,  Cosentino, F., Pasta, F., et al. Simulation study of transcatheter heart valve implantation in patients with stenotic bicuspid aortic valve. Med. Biol. Eng. Comput.  2020. 58(4): 815–829. https://doi.org/10.1007/s11517-020-02138-4
  4. Capelli, C., Bosi, G. M., Cerri, E., Nordmeyer, J., Odenwald, T., Bonhoeffer, P., et al. Patient-specific simulations of transcatheter aortic valve stent implantation. Med. Biol. Eng. Comput. 2012. 50(2): 183–192. https://doi.org/10.1007/s11517-012-0864-1.

25.Tzamtzis, S., Viquerat, J., Yap, J., Mullen, M. J., and Burriesci, G. Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 2013. 35(1):125–130. https://doi.org/10.1016/j.medengphy.2012.04.009.

26.Shrivastava, S. Medical device materials. Proceedings from the Materials and Processes for Medical Devices Conferences; 2003 Sep 8-10; Anaheim, California. Asm International; 2004.Available from: https://libcatalog.usc.edu/discovery/fulldisplay.

27.Asgari, S. Anomalous plastic behavior of fine-grained MP35N alloy during room temperature tensile testing. J. Mater. Process. Technol. 2004.155(1):1905–1911. https://doi.org/10.1016/j.jmatprotec.2004.04.280.

28.Bailey J. Implications for leaflet behaviour in heavily calcified patient-specific aortic roots: simulation of transcatheter aortic valve implantation. Thesis, University of Southampton; 2015.

29.Smith, C. R., Leon, M. B., Miller, D. C., Moses, J. W., Svenssen, L. G., and Tuzcu, E. M. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011. 364(23): 2187–2198. https://doi.org/10.1056/NEJMoa1103510.

  1. Stradins, P., Lacis, R., Ozolanta, I., Purina, B., Ose, V., Feldmane, L., et al. Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur. J. Cardio-Thorac. Surg. 2004. 26(3): 634–639. https://doi.org/10.1016/j.ejcts.2004.05.043.

31.Martin, C., Pham, T., and Sun, W. Significant differences in the material properties between aged human and porcine aortic tissues. Eur. J. Cardio-Thora. Surg. 2011. 40(1): 28–34. https://doi.org/10.1016/j.ejcts.2010.08.056.

32.ECHONOMY. Tools for Echocardiographic Calculations [Internet]. 2019 [cited 2019 Sep 6]. Available from: http://saric.us/echonomy/CoreValve%20Sizing.htm.

33.Bianchi, M. Numerical Modeling of Transcatheter Aortic Valve Replacement: A Patient-specific Approach to Minimize Clinical Complications. State University of New York at Stony Brook; 2019.

34.Lin, S., Akula, P., and Gu, L. Mechanical performance of bovine pericardial bioprosthetic valves. J. Med. Devices. 2013. 3(7): 030926. https://doi.org/10.1115/1.4024346.

  1. The Multimedia Manual of Cardio-Thoracic Surgery [Internet]. 2020 [cited 2020 Nov 20]. Available from: https://mmcts.org/tutorial/21.

ارتقاء امنیت وب با وف بومی