ارزیابی روش‌های پردازش سیگنال و یادگیری عمیق برای استخراج فواصل ضربان به ضربان از سیگنال بالیستوکاردیوگرافی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان،‌ ایران

2 دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران

3 دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی اصفهان، اصفهان، ایران

4 دانشکده مهندسی پزشکی، دانشگاه لیهای، ایالت پنسیلوانیا، آمریکا

چکیده

بیماری‌های قلبی-عروقی یکی از اصلی‌ترین عامل مرگ‌ومیر در جهان هستند و پایش مداوم و غیرتهاجمی شاخص‌های قلبی برای تشخیص زودهنگام و مدیریت این بیماری‌ها حیاتی است. سیگنال بالیستوکاردیوگرافی  (BCG)، که بازتابی از نیروهای مکانیکی ناشی از فعالیت قلبی است، پتانسیل بالایی برای پایش سلامت قلب در محیط‌های روزمره و بدون نیاز به اتصال الکترود به بدن را فراهم می‌کند. با این حال، ماهیت پیچیده و حساس به نویز این سیگنال، استخراج دقیق پارامترهای کلیدی مانند فواصل ضربان به ضربان (IBI)  را به یک چالش تبدیل کرده است. هدف اصلی این پژوهش، ارزیابی جامع پنج رویکرد متفاوت پردازش سیگنال و یادگیری عمیق برای استخراج دقیق IBI از سیگنال BCG و اعتبارسنجی آن‌ها با سیگنال مرجع الکتروکاردیوگرام (ECG) است. بدین منظور، از یک مجموعه داده عمومی شامل سیگنال‌های همزمان BCG و ECG از ۴۰ شرکت‌کننده استفاده شد. در این مطالعه روش‌های تخمین‌گر فاصله‌ای محلی پیوسته (CLIE)، روش CLIE با پنجره تطبیقی، شبکه عصبی پرسپترون چندلایه  (MLP)، شبکه عصبی کانولوشنال (CNN) و شبکه عصبی حافظه طولانی کوتاه‌مدت دوطرفه (BiLSTM) ارزیابی‌شده است. نتایج ارزیابی با استفاده از معیارهای میانگین خطای مطلق (MAE)، صدک ۹۵ خطا و ضریب همبستگی نشان داد که روش CLIE با MAE برابر با 7/28 میلی‌ثانیه و بالاترین ضریب همبستگی (۷۷/0) بهترین عملکرد کلی را در دقت تخمین IBI داشته است. از سوی دیگر، روش BiLSTM  با وجود خطای میانگین کمی بالاتر (1/40 میلی‌ثانیه)، با ثبت کمترین مقدار برای صدک ۹۵ خطا (5/9٪)، پایداری و قابلیت اطمینان بالایی در کنترل خطاهای بزرگ از خود نشان داد. روش‌های MLP و CNN عملکردی متوسط و روش پنجره تطبیقی ضعیف‌ترین عملکرد را داشتند. یافته‌های این تحقیق نشان می‌دهد که استخراج دقیق IBI از سیگنال BCG امری امکان‌پذیر است و روش‌های CLIE و BiLSTM به ترتیب به دلیل دقت بالا و پایداری مناسب، گزینه‌های امیدوارکننده‌ای برای توسعه سیستم‌های پایش سلامت هوشمند و خانگی هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Signal Processing and Deep Learning Methods for Inter-Beat Interval Extraction from Ballistocardiography Signals

نویسندگان [English]

  • Roya Tabashiri Esfahani 1
  • Ali Loghmani 2
  • Amir Akhavan 3
  • Amirtaha Taebi 4
1 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
2 Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
3 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
4 Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
چکیده [English]

Cardiovascular diseases remain the leading cause of mortality worldwide, highlighting the critical need for continuous and non-invasive monitoring of cardiac function to enable early detection and effective management. Ballistocardiography (BCG), which captures the mechanical forces associated with cardiac activity, holds great promise for unobtrusive heart monitoring in daily-life settings without requiring direct electrode contact. However, the inherent complexity and high susceptibility to noise in BCG signals make the accurate extraction of key cardiac parameters—particularly inter-beat intervals (IBIs)—a challenging task. This study presents a comprehensive evaluation of five distinct signal processing and deep learning approaches for IBI estimation from BCG signals, validated against synchronized electrocardiogram (ECG) recordings. In contrast to the previous works, we employ a publicly available dataset distinct from those commonly used, enabling a broader assessment of method generalizability—particularly for the CLIE algorithm. The evaluated methods include: Continuous Local Interval Estimator (CLIE), CLIE with adaptive windowing, Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), and Bidirectional Long Short-Term Memory (BiLSTM) network. For the deep learning methods (MLP and CNN), we propose novel network architectures specifically tailored to the characteristics of BCG signals, leading to improved performance compared to conventional designs. Furthermore, our BiLSTM-based method not only incorporates testing on a dataset different from that of previous reference studies, but also focuses on the accurate prediction of R-peak locations in the BCG signal, from which IBIs are subsequently derived. Evaluation based on Mean Absolute Error (MAE), 95th percentile error, and correlation coefficient shows that the CLIE method achieved the best overall IBI estimation accuracy, with an MAE of 28.7 milliseconds and the highest correlation coefficient (0.77). The BiLSTM method, while having a slightly higher MAE (40.1 milliseconds), demonstrated superior robustness to outliers by achieving the lowest 95th percentile error (9.5%). The MLP and CNN methods showed moderate performance, and the adaptive windowing variant of CLIE performed the worst. These findings demonstrate that accurate IBI extraction from BCG signals is feasible, and that both the CLIE and BiLSTM approaches are promising candidates for implementation in intelligent, home-based cardiac monitoring systems—offering, respectively, high accuracy and strong resilience to large errors.

کلیدواژه‌ها [English]

  • Ballistocardiography
  • Inter-Beat Intervals
  • Electrocardiogram
  • Neural Network
  • Signal Processing
  • Cardiovascular Health
  1. Inan O.T., Migeotte P.F., Park K.S., Etemadi M., Tavakolian K., Casanella R., Zanetti J., Tank J., Funtova I., Prisk G.K. Ballistocardiography and seismocardiography: A review of recent advances. IEEE Journal of Biomedical and Health Informatics. 2015;19(4):1414–1427. https://doi.org/10.1109/JBHI.2014.2361732
  2. Wang F., Zou Y., Tanaka M., Matsuda T., Chonan S. Unconstrained cardiorespiratory monitor for premature infants. International Journal of Applied Electromagnetics and Mechanics. 2007; 25(1–4): 469–475. https://doi.org/10.3233/JAE-2007-751
  3. Martín‑Yebra A., Landreani F., Casellato C., Pavan E., Frigo C., Migeotte P.F., Caiani E. Studying heart rate variability from ballistocardiography acquired by force platform: Comparison with conventional ECG. Proceedings of the 2015 Computing in Cardiology Conference (CinC). 2015. p. 929–32. https://doi.org/10.3233/jae-2007-751
  4. Antink C.H., Mai Y., Aalto R., Brüser C., Leonhardt S., Oksala N., Vehkaoja A. Ballistocardiography can estimate beat-to-beat heart rate accurately at night in patients after vascular intervention. IEEE Journal of Biomedical and Health Informatics. 2020;24(8) 2230-2237. https://doi.org/10.1109/JBHI.2020.2970298
  5. Alametsä J., Värri A., Koivuluoma M., Barna L. The potential of EMFi sensors in heart activity monitoring. Proceedings of the 2nd OpenECG Workshop, Berlin, Germany. 2004. https://researchportal.tuni.fi/en/publications/the-potential-of-emfi-sensors-in-herat-activity-monitoring
  6. Hu H.F., Sun S.J., Lv R.Q., Zhao Y. Design and experiment of an optical fiber micro bend sensor for respiration monitoring. Sensors and Actuators A: Physical.2016;251:126–133. https://doi.org/10.1016/j.sna.2016.10.013
  7. Brink M., Müller C.H., Schierz C. Contact-free measurement of heart rate, respiration rate, and body movements during sleep. Behavior Research Methods. 2006;38(3):511–521. https://doi.org/10.3758/BF03192806
  8. Rajput J.S., Sharma M., Kumar T.S., Acharya U.R. Automated detection of hypertension using continuous wavelet transform and a deep neural network with ballistocardiography signals. International Journal of Environmental Research and PublicHealth.2022;19(7):4014. https://doi.org/10.3390/ijerph19074014
  9. Etemadi M., Inan O.T., Giovangrandi L., Kovacs G.T. Rapid assessment of cardiac contractility on a home bathroom scale. IEEE Transactions on Information Technology in Biomedicine. 2011;15(6):864–869. https://doi.org/10.1109/TITB.2011.2161998
  10. Carlson C., Turpin V.R., Suliman A., Ade C., Warren S., Thompson D.E. Bed-based ballistocardiography: Dataset and ability to track cardiovascular parameters. Sensors.2021;21(1):156. https://doi.org/10.3390/s21010156
  11. Fariha M., Ikeura R., Hayakawa S., Tsutsumi S. Analysis of Pan-Tompkins algorithm performance with noisy ECG signals. Journal of Physics: ConferenceSeries.2020;1532:012022. https://doi.org/10.1088/1742-6596/1532/1/012022
  12. Bruser C., Stadlthanner K., de Waele S., Leonhardt S. Adaptive beat-to-beat heart rate estimation in ballistocardiograms. IEEE Transactions on Information Technology in Biomedicine. 2011;15(5):778–786. https://doi.org/10.1109/TITB.2011.2128337
  13. Feng J., Huang W., Jiang J., Wang Y., Zhang X., Li Q., Jiao X. Non-invasive monitoring of cardiac function through ballistocardiogram: An algorithm integrating short-time Fourier transform and ensemble empirical mode decomposition. Frontiers in Physiology.2023;14:1201722. https://doi.org/10.3389/fphys.2023.1201722
  14. Goodfellow I., Bengio Y., Courville A. Deep learning. MIT Press, Cambridge. 2016.
  15. Nielsen M.A. Neural networks and deep learning. Determination Press, San Francisco, CA, USA. 2015. http://neuralnetworksanddeeplearning.com
  16. Morokuma S, Saitoh T, Kanegae M, Motomura N, Ikeda S, Niizeki K. Prediction of ECG signals from ballistocardiography using deep learning for the unconstrained measurement of heartbeat intervals. Scientific Reports. 2025;15(1):999. https://doi.org/10.1038/s41598-024-84049-0

 

ارتقاء امنیت وب با وف بومی