ارزیابی رفتار خزشی فولاد مقاوم به حرارت HP35Nb با روش شبیه‌سازی اجزای محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

پیش‌بینی رفتار خزشی آلیاژهای مقاوم به حرارت در شرایط تنش و دمای بالا، نقش کلیدی در طراحی و بهینه‌سازی قطعات صنعتی دارد. آسیب و گسیختگی ناگهانی می‌تواند خطرات و هزینه‌های قابل‌توجهی را تحمیل کند. آزمون‌های تجربی برای بررسی رفتار خزشی تحت شرایط واقعی، فرایندی زمان‌بر و پرهزینه است. بنابراین، توسعه مدل‌های عددی دقیق برای پیش‌بینی خزش، امری ضروری است. انتخاب مدلی مناسب و سازگار با ویژگی‌های خزشی ماده، تأثیر قابل‌توجهی در دقت پیش‌بینی‌ها دارد. لازم است باتوجه به رفتار خزشی ترکیب موردنظر مدل متناسب انتخاب شود. مدل‌های مختلفی برای توصیف رفتار خزشی توسعه یافته‌اند که در این میان، مدل قانون توان و مدل تتا پروجکشن به‌عنوان دو مدل پرکاربرد شناخته می‌شوند. در این پژوهش، رفتار خزشی آلیاژ HP35Nb  تحت شرایط مختلف تنش و دمای بالا با استفاده از این دو مدل شبیه‌سازی شد. نتایج با داده‌های تجربی مقاله خزشی این آلیاژ مقایسه شد تا دقت هر مدل در پیش‌بینی رفتار خزشی مشخص شود. به‌منظور تعیین شرایط کارکرد بهینه دو مدل تتا پروجکشن و قانون توان در پیش‌بینی رفتار خزشی ماده به‌ویژه تعیین عملکرد آن‌ها در مراحل مختلف خزش،  نتایج حل عددی مدل‌ها در شرایط مرزی مختلف مورد ارزیابی قرار گرفت. نتایج نشان داد که مدل تتا پروجکشن، به دلیل توانایی در توصیف هر سه مرحله خزش به‌ویژه در دما و تنش‌های بالا، تطابق بیشتری با داده‌های آزمایشگاهی داشته و گزینه مناسبی برای پیش‌بینی خزش در شرایط بلندمدت است. این مدل توانست زمان گسیختگی را بادقت مناسبی پیش‌بینی و در تنش‌های بالا و پایین عملکرد پایداری داشته باشد. در مقابل، مدل قانون توان در مرحله اول و دوم خزش دقت بالایی داشت اما در مرحله سوم، کرنش‌های کمتری از مقدار واقعی پیش‌بینی‌ کرد. بعلاوه، در تنش‌های بالاتر، مدل قانون توان دچار انحراف قابل‌توجهی از داده‌های تجربی شد، درحالی‌که در تنش‌های پایین عملکرد بهتری داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Creep Behavior of HP35Nb Heat Resistant Steel Using Finite Element Method

نویسندگان [English]

  • Aboozar Taherizadeh
  • Yasamin Mohammadi
Department of Materials Engineering. Isfahan University of Technology, Isfahan, 84156-83111, Iran
چکیده [English]

Prediction of creep behavior in heat-resistant alloys, especially under elevated stress and temperature conditions, is crucial for the design and optimization of industrial components. Significant risks and costs often arise from sudden damage and failure due to creep. Experimental tests for evaluation of creep behavior are time-consuming and expensive; thus, developing accurate numerical models for creep prediction is essential. The power law model and theta projection model are known as two widely-used methods. This study investigated the creep behavior of HP35Nb alloy under varying stress conditions and elevated temperatures through simulations using both power law and theta projection models. A comparison of the numerical results with experimental data was conducted to assess the accuracy of each model in predicting creep behavior. The findings showed that the theta projection model, due to its ability to represent all three stages of creep, aligned more closely with the experimental data and was identified as a suitable choice for predicting the long-term creep. This model was able to estimate rupture time with minimal discrepancy compared to the experimental results, and displayed consistent performance under both high and low stresses. In contrast, the power law model demonstrated high accuracy during the initial and secondary stages of creep, but its predicted strains were lower than the experimental values in the tertiary stage. Moreover, at elevated stresses, the power law model exhibited significant deviation from the experimental data, while its predictions were more accurate at lower stresses.

کلیدواژه‌ها [English]

  • Creep
  • Finite Element Method
  • Abaqus
  • Power-Law Model
  • Theta Projection Model
  1. Wang XY, Wang X, Zhang XC, Zhu SF. Creep damage characterization of UNS N10003 alloy based on a numerical simulation using the Norton creep law and Kachanov–Rabotnov creep damage model. Nucl Sci Tech. 2019;30(4). https://doi.org/10.1007/s41365-019-0586-2
  2. Saberi E, Nakhodchi S, Dargahi A, Nikbin K. Predicting stress and creep life in Inconel 718 blade-disk attachments. Eng Fail Anal. 2020;108:104226. https://doi.org/10.1016/j.engfailanal.2019.104226
  3. Hu M, Li K, Li S, Cai Z, Pan J. Stress relief investigation using creep model considering back stress in welded rotor. J Constr Steel Res. 2020;169:106017. https://doi.org/10.1016/j.jcsr.2020.106017
  4. Mukherjee S, Nuhi M, Dasgupta A, Modarres M. Creep constitutive models suitable for solder alloys in electronic assemblies. J Electron Packag. 2016;138(3):30801. https://doi.org/10.1115/1.4033375
  5. Liang L, Feng Z, Zhang H, Chen Z, Qian C. Development and application of a power law constitutive model for eddy current dampers. Comput Model Eng Sci. 2024;138(3):1–10. https://doi.org/10.32604/cmes.2023.031260
  6. Faghihi F, Numanović M, Knobloch M. Effect of thermal creep on the fire resistance of steel columns. Fire Saf J. 2023;137:103750. https://doi.org/10.1016/j.firesaf.2023.103750
  7. Ahmad MIM, Sosa JLC, Rongong JA. Characterisation of creep behaviour using the power law model in copper alloy. J Mech Eng Sci. 2017;11(1):2503–10. https://doi.org/10.15282/jmes.11.1.2017.9.0230
  8. Keralavarma SM, Cagin T, Arsenlis A, Benzerga AA. Power-law creep from discrete dislocation dynamics.  Phys Rev Lett. 2012;109(26):265504. https://doi.org/10.1103/physrevlett.109.265504
  9. Kim DH, Lee CM, Kim JH, Kim SH, Yeo S, Lee YK. Thermal creep analysis and correlation development for manufactured HT9 cladding. J Nucl Mater. 2024;593:154999. https://doi.org/10.1016/j.jnucmat.2024.154999
  10. Harrison WJ, Evans PWJ. Application of the theta projection method to creep modelling using Abaqus. In: Abaqus Regional Users Conference; 2007; Swansea, UK. Swansea: Swansea University; 2007. p. 1–15. (DOI unavailable)
  11. Day WD, Gordon AP. A modified theta projection creep model for a nickel-based super-alloy. Proc ASME Turbo Expo. 2013;7 A:1–9. https://doi.org/10.1115/GT2013-94805
  12. de Santana PMB, Della Rovere CA, Albuquerque EC de MC, de Souza CAC. Evaluation of the effects of the addition of Al, Ti, and Zr on microstructure, carburization and creep resistance of the HPNb alloy. J Mater Res Technol. 2024;30:461–72. https://doi.org/10.1016/j.jmrt.2024.02.234
  13. Harandi AN, Eslami A, Bahrami A, Bakhtafrouz A, Yazdan Mehr M. Failure Analysis of Two HP-Nb Heat-Resistant Tubes after 46,000 h Exposure to Reformer Service Conditions. Metals (Basel). 2023;13(2):228. https://doi.org/10.3390/met13020228
  14. Shin D, Yamamoto Y, Brady MP, Lee S, Haynes JA. Modern data analytics approach to predict creep of high-temperature alloys. Acta Mater. 2019;168:321–30. https://doi.org/10.1016/j.actamat.2019.02.017
  15. Zhao Y, Gong J, Yong J, Wang X, Shen L, Li Q. Creep behaviours of Cr25Ni35Nb and Cr35Ni45Nb alloys predicted by modified theta method. Mater Sci Eng A. 2016;649:1–8. https://doi.org/10.1016/j.msea.2015.09.036
  16. Ro U, Kim JH, Lee H, Kang SJ, Kim MK. Creep–fatigue damage evaluation of Grade 91 steel using interrupted creep–fatigue test. In: ASME Pressure Vessels and Piping Conference (PVP); 2018; New York, USA. New York: ASME; 2018. p. 5–10. https://doi.org/10.1115/PVP2018-84561
  17. Niknam B, Haji Aboutalebi F, Ma W, Masoudi Nejad R. Effect of variations internal pressure on cracking radiant coils distortion. Structures. 2021;34:4986–98. https://doi.org/10.1016/j.istruc.2021.10.083
  18. Bailey RW. The utilization of creep test data in engineering design. Proc Inst Mech Eng. 1935;131(1):131–349. https://doi.org/10.1243/PIME_PROC_1935_131_012_02
  19. Golan O, Arbel A, Eliezer D, Moreno D. The applicability of Norton’s creep power law and its modified version to a single-crystal superalloy type CMSX-2. Mater Sci Eng A. 1996;216(1–2):125–30. https://doi.org/10.1016/0921-5093(96)10400-7
  20. Maximov JT, Duncheva GV, Anchev AP, Ichkova MD. Modeling of strain hardening and creep behaviour of 2024T3 aluminium alloy at room and high temperatures. Comput Mater Sci. 2014;83:381–93. https://doi.org/10.1016/j.commatsci.2013.11.057
  21. Evans RW, Beden I, Wilshire B. Creep Life Prediction for 0. 5 Cr--0. 5 Mo--0. 25 V Ferritic Steel. Creep Fract Eng Mater Struct. 1984;2:1277–90. https://doi.org/10.4028/72-7485
  22. Borges GO, Barboza MJR, Reis DAP. Mathematical Modeling Applying ν Concept and θ Projection to Creep of Ti-6Al-4V Alloy. Mater Res. 2023;26:2–7. https://doi.org/10.1590/1980-5373-MR-2022-0555
  23. Sattar M, Othman AR, Muzamil M, Kamaruddin S, Akhtar M, Khan R. Correlation Analysis of Established Creep Failure Models through Computational Modelling for SS-304 Material. Metals (Basel). 2023;13(2). https://doi.org/10.3390/met13020197
  24. Abdulsalam H. Mesh sensitivity assessment on 2D and 3D elastic finite element analysis on a compact tension specimen geometry using Abaqus/CAE software. In: IOP Conference Series: Earth and Environmental Science. 2021;730(1):012032. https://doi.org/10.1088/1755-1315/730/1/012032
  25. Zhang J, Li J, Zan J, Guo Z, Liu K. A Creep Constitutive Model, Based on Deformation Mechanisms and Its Application to Creep Crack Growth. Metals (Basel). 2022;12(12):2179. https://doi.org/10.3390/met12122179
  26. Soares TRL, Kieliba I, Azenha M, Tonnesen T, Lourenço PB. A theta projection model for compressive creep behaviour of refractories at high temperature. application to alumina-spinel. Meccanica. 2023;58(12):2401–20. https://doi.org/10.1007/s11012-023-01734-6
  27. Kim WG, Yin SN, Kim YW, Chang JH. Creep characterization of a Ni-based Hastelloy-X alloy by using theta projection method. Eng Fract Mech. 2008;75(17):4985–95. https://doi.org/10.1016/j.engfracmech.2008.06.017
  28. Ruban R, Latha S, Sivapirakasam SP, Srinivasan VS, Prasad Reddy G V. On new relation for theta projection approach for the prediction of creep behaviour of alloy D9I austenitic stainless steel.  Mater Today Proc. 2019; 9154–8. https://doi.org/10.1016/j.matpr.2019.12.417
  29. Law M, Payten W, Snowden K. Creep modeling of welded joints using the theta projection concept and finite element analysis. J Press Vessel Technol. 2000;122(1):22–6. https://doi.org/10.1115/1.556141
  30. Smith SA. Microstructural evolution of Nimonic 263 for use in next generation power plant [PhD thesis]. Loughborough (UK): Loughborough University; 2014. https://doi.org/10.31399/asm.cp.am-epri-2010p0110
  31. Liu H, Peng F, Zhang Y, Li Y, An K, Yang Y, et al. A new modified theta projection model for creep property at high temperature. J Mater Eng Perform.  2020;29:4779–85. https://doi.org/10.1007/s11665-020-04973-w
  32. Doyar I, Poshyvalov V. Development of a stochastic model of failure of structural materials in creep at hardening stage. East Eur Adv Technol J. 2016;3(5):25–31. https://doi.org/10.15587/1729-4061.2016.69653 (In Russian)

33.          Hiyoshi N, Araya M. Creep deformation and rupture time evaluation for Ti43Al5V4Nb at 1033 K using the θ-projection method. Mater High Temp. 2021;38(1):31–8. https://doi.org/10.1080/09603409.2020.1852650

ارتقاء امنیت وب با وف بومی