شبیه‌سازی رشد و تقسیم تومور تحت نیروهای محرکه شیمیایی با استفاده از روش میدان فاز

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان

چکیده

در این مقاله، رشد و تقسیم تومورها با استفاده از روش میدان فاز بررسی می‌گردد. با در نظر گرفتن محیط تومور به عنوان سیال، رشد و تقسیم تحت نیروهای محرکه شیمیایی مطالعه می‌شود. برای شبیه‌سازی مرز مشترک جداکننده تومور و ماده زمینه خارج سلولی، روابط فشار رشد، میدان سرعت و غلظت‌های مختلف به صورت جفت شده با معادلات میدان فاز استفاده می‌شوند. همچنین، فرایندهایی مانند کموتاکسی و هپتوتاکسی و شرایط مختلفی از شبکه‌بندی حل، شکل اولیه تومور، ضخامت مرز مشترک و ضریب کشش سطحی در مدل‌سازی تکامل تومور استفاده می‌شوند. نتایج نشان می‌دهد که در تومورهایی با شکل اولیه بیضی‌گون کشیده‌تر، رشد تسریع می‌شود؛ اما، شکل نهایی تغییری نمی‌کند. با استفاده از این مدل، محدوده‌ای برای ضخامت مرز مشترک به دست آمد که در آن رشد به صورت غیرفیزیکی متوقف می‌شود. هم چنین، محدوده فیزیکی برای ضریب کشش سطحی به نحوی به دست آمد که کمتر از آن، توقف رشد و بیشتر از آن، باز شدن بیش از حد مرز مشترک رخ می‌دهد. با اضافه شدن هپتوتاکسی و به خصوص کموتاکسی، نرخ رشد تومور افزایش می‌یابد. اولی موجب تقسیم شدن، در حالی که دومی باعث شاخه‌ای شدن تومور می‌گردد. هرچه ضریب بیشتر باشد، شاخه‌ای شدن بیشتر به وقوع می‌پیوندد. کموتاکسی نسبت به هپتوتاکسی اثر بیشتری بر روی شکل و سرعت تغییرات تومور می‌گذارد. با ترکیب اثر هر دو عامل، تقسیم و شاخه‌ای شدن، به صورت هم‌زمان، دیده می‌شود. نتایج به دست آمده در درک بهتر عوامل کلیدی در رشد و تقسیم تومور کمک می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Tumor Growth and Division Under Chemical Driving Forces Using the Phase Field Method

نویسندگان [English]

  • Peyman Naderi
  • Mehdi Javanbakht
  • Ahmadreza Pishevar
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

In this paper, growth and division of tumors are investigated using the phase field modeling. By considering the environment as fluid, conditions such as chemotaxis and haptotaxis processes are used to study the growth and division of tumors. In this model, growth pressure, velocity field and different concentrations coupled with the phase field equation are used to simulate the membrane of the tumor, separating it from the extracellular matrix (ECM). Also, processes such as chemotaxis and haptotaxis, different meshes, initial tumor ovalities, interface thicknesses and surface tensions are used to model the tumor evolution. The obtained results show that in tumors with higher initial ovality, the evolution accelerates but the morphology remains unchanged. Using this model, a membrane thickness range is found, out of which the growth is unphysically suppressed. Large and small surface tension coefficient suppresses the growth and leads to the interface widening, respectively. The physical range of the surface tension coefficient is also found, below which the growth is suppressed and above which interface widening occurs. The rate of tumor growth increases by adding the haptotaxis and in particular, chemotaxis. The former results in tumor dividing while the latter causes the tumor branching. Higher taxis coefficient results in higher branching rate. Chemotaxis shows a larger effect on the tumor morphology and kinetics than the haptotaxis. Combining both mechanisms leads to simultaneous tumor division and branching. The obtained results help for a better understanding of the key parameters in tumor growth and division.

کلیدواژه‌ها [English]

  • Growth and Division
  • Phase Field Theory
  • Chemical Forces
  • Numerical Solution Parameters
  • Tumor Evolution
  1. Zhao J., Wang Q. A 3D multi-phase hydrodynamic model for cytokinesis of eukaryotic cells. Communications in Computational Physics. 2016;19(3):663-81. doi: 10.4208/cicp.181014.140715a.
  2. Reichl E.M., Effler J.C., Robinson D.N. The stress and strain of cytokinesis. Trends in cell biology. 2005;15(4):200-206. doi: 10.1016/j.tcb.2005.02.004.
  3. Minc N., Burgess D., Chang F. Influence of cell geometry on division-plane positioning. Cell. 2011;144(3):414-26. doi: 10.1016/j.cell.2011.01.016.
  4. Akiyama M., Nonomura M., Tero A., Kobayashi R. Numerical study on spindle positioning using phase field method. Physical biology. 2018; 16(1): 016005. doi: 10.1088/1478-3975/aaee45
  5. HAUßER F, Li S, Lowengrub J, Marth W, Rätz A, Voigt A. Thermodynamically consistent models for two-component vesicles. Int. J. Biomath. Biostat. 2013;2(1):19-48.
  6. Grün D., van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015;163(4):799-810. doi: 10.1016/j.cell.2015.10.039.
  7. Miyashita S., Adachi T., Yamashita M., Sota T., Hoshino M. Dynamics of the cell division orientation of granule cell precursors during cerebellar development. Mechanisms of Development. 2017;147:1-7. doi: 10.1016/j.mod.2017.06.002.
  8. Jiang J., Garikipati K., Rudraraju S. A diffuse interface framework for modeling the evolution of multi-cell aggregates as a soft packing problem driven by the growth and division of cells. Bulletin of mathematical biology. 2019; 81:3282-300. doi: 10.1007/s11538-019-00577-1.
  9. Alt S., Ganguly P., Salbreux G. Vertex models: from cell mechanics to tissue morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2017;372(1720):20150520.

doi: 10.1098/rstb.2015.0520.

  1. Ratcliff WC, Denison RF, Borrello M, Travisano M. Experimental evolution of multicellularity. Proceedings of the National Academy of Sciences. 2012; 109(5): 1595-1600. doi: 10.1073/pnas.1115323109.
  2. Doostmohammadi A., Thampi S.P., Yeomans J.M. Defect-mediated morphologies in growing cell colonies. Physical review letters. 2016;117(4):048102.

doi: 10.1103/PhysRevLett.117.048102.

  1. Zimmermann J., Camley B.A., Rappel W.J., Levine H. Contact inhibition of locomotion determines cell–cell and cell–substrate forces in tissues. Proceedings of the National Academy of Sciences. 2016; 113(10): 2660-2665. doi: 10.1073/pnas.1522330113.
  2. Gudipaty S.A., Lindblom J., Loftus P.D,. Redd M.J., Edes K., Davey C., et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature. 2017; 543: 118-121. doi: 10.1038/nature21407.
  3. He L., Si G,. Huang J., Samuel A.D., Perrimon N. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel. Nature. 2018; 555: 103-6. doi: 10.1038/nature25744.
  4. Li J., Wang Z., Chu Q., Jiang K., Li J., Tang N. The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Developmental cell. 2018; 44(3): 297-312.e5. doi: 10.1016/j.devcel.2018.01.008.
  5. Tang Z., Hu Y., Wang Z., Jiang K., Zhan C., Marshall W.F., et al. Mechanical forces program the orientation of cell division during airway tube morphogenesis. Developmental cell. 2018; 44(3): 313-25.e5. doi: 10.1016/j.devcel.2017.12.013.
  6. Bringmann M., Bergmann D.C. Tissue-wide mechanical forces influence the polarity of stomatal stem cells in Arabidopsis. Current Biology. 2017;27(6):877-883. doi: 10.1016/j.cub.2017.01.059.
  7. Brodland G.W. Computational modeling of cell sorting, tissue engulfment, and related phenomena: A review. Appl Mech Rev. 2004;57(1):47-76.

doi: 10.1115/1.1583758.

  1. Fletcher A.G., Osterfield M., Baker R.E., Shvartsman S.Y. Vertex models of epithelial morphogenesis. Biophysical journal. 2014; 106(11): 2291-2304. doi: 10.1016/j.bpj.2013.11.4498.
  2. Glazier J.A., Graner F. Simulation of the differential adhesion driven rearrangement of biological cells. Physical Review E. 1993;47(3):2128.

doi: 10.1103/physreve.47.2128.

  1. Goel N., Campbell R.D., Gordon R., Rosen R., Martinez H., Yčas M. Self-sorting of isotropic cells. Journal of theoretical biology. 1970;28(3):423-468.

doi: 10.1016/0022-5193(70)90080-9.

  1. Wyatt T.P., Harris A.R., Lam M., Cheng Q., Bellis J., Dimitracopoulos A., et al. Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long cell axis. Proceedings of the National Academy of Sciences. 2015; 112(18): 5726-31. doi: 10.1073/pnas.1420585112.
  2. Wong F., Renner L.D., Özbaykal G., Paulose J., Weibel D.B., Van Teeffelen S., et al. Mechanical strain sensing implicated in cell shape recovery in Escherichia coli. Nature microbiology. 2017;2(9):1-8.

doi: 10.1038/nmicrobiol.2017.115.

  1. Si F., Li B., Margolin W., Sun S.X. Bacterial growth and form under mechanical compression. Scientific reports. 2015;5(1):11367. doi: 10.1038/srep11367.
  2. Cattin C.J., Düggelin M., Martinez-Martin D., Gerber C., Müller D.J., Stewart M.P. Mechanical control of mitotic progression in single animal cells. Proceedings of the National Academy of Sciences. 2015; 112(36): 11258-11263.

doi: 10.1073/pnas.1502029112.

  1. Tan J., Sohrabi S., He R., Liu Y. Numerical simulation of cell squeezing through a micropore by the immersed boundary method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2018; 232(3): 502-514. doi: 10.1177/0954406217730850.
  2. Ladoux B., Mège R-M. Mechanobiology of collective cell behaviours. Nature reviews Molecular cell biology. 2017;18(12):743-57.

doi: 10.1038/nrm.2017.98.

  1. Jain R.K,. Martin J.D., Stylianopoulos T. The role of mechanical forces in tumor growth and therapy. Annual review of biomedical engineering. 2014;16(1):321-346. doi: 10.1146/annurev-bioeng-071813-105259.
  2. Golneshan A., Nemati H. Is there any similarity between tumour growth and thermal expansion? Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2012; 226(1): 192-201.

doi: 10.1177/0954406211411867.

  1. Akbarpour Ghazani M., Saghafian M., Jalali P., Soltani M. Mathematical simulation and prediction of tumor volume using RBF artificial neural network at different circumstances in the tumor microenvironment. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2021; 235(11): 1335-1355.

doi: 10.1177/09544119211028380.

  1. Nargis N.N. Modeling and Simulation of Avascular Tumor Growth using a Level Set Method: University of California, Davis; 2014.
  2. Nargis N., Aldredge R. Effects of matrix metalloproteinase on tumour growth and morphology via haptotaxis. J. Bioengineer & Biomedical Sci. 2016;6:1000207. doi: 10.4172/2155-9538.1000207.
  3. Nargis N.N., Aldredge R.C., Guy R.D. The influence of soluble fragments of extracellular matrix (ECM) on tumor growth and morphology. Mathematical Biosciences. 2018; 296: 1-16.

 doi: 10.1016/j.mbs.2017.11.014.

  1. Javanbakht M., Levitas V.I. Athermal resistance to phase interface motion due to precipitates: A phase field study. Acta Materialia. 2023;242:118489.

doi: 10.1016/j.actamat.2022.118489.

  1. Mesripoor M., Javanbakht M., Jafarzadeh H. Phase-field simulation of crack propagation in particulate nanocomposite materials considering surface stresses. Archive of Applied Mechanics. 2024; 94(7): 1-16.

doi: 10.1007/s00419-024-02618-1.

  1. Javanbakht M., Ghaedi M.S. Phase field approach for void dynamics with interface stresses at the nanoscale. International Journal of Engineering Science. 2020; 154: 103279.

 doi: 10.1016/j.ijengsci.2020.103279.

  1. Goki A.T., Javanbakht M. Size-dependent melting of gold nanotube: Phase field model and simulations and thermodynamic analytical solution. Materials Today Communications. 2024; 40:109641.

doi: 10.1016/j.mtcomm.2024.109641.

  1. Qin R., Bhadeshia H. Phase field method. Materials science and technology. 2010; 26(7):803-811.

doi: 10.1179/174328409X453190.

  1. Nonomura M. Study on multicellular systems using a phase field model. PLOS One. 2012; 7(4):e33501.

doi: 10.1371/journal.pone.0033501.

  1. Allen S.M., Cahn J.W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta metallurgica. 1979; 27(6): 1085-1095.

doi: 10.1016/0001-6160(79)90196-2.

  1. Shao D., Rappel W-J., Levine H. Computational model for cell morphodynamics. Physical review letters. 2010; 105(10):108104.

doi: 10.1103/PhysRevLett.105.108104.

  1. Najem S., Grant M. Phase-field model for collective cell migration. Physical Review E. 2016; 93(5): 052405. doi: 10.1103/PhysRevE.93.052405.
  2. He Z., Guo K. Exploration of cell division times during bacterial cytokinesis. Physical Chemistry Chemical Physics. 2017;19(47):32038-46.

doi: 10.1039/C7CP05050J.

  1. Anderson A.R., Weaver A.M., Cummings P.T., Quaranta V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell. 2006; 127(5): 905-915.

doi: 10.1016/j.cell.2006.09.042.

  1. Anderson A.R., Rejniak K.A., Gerlee P., Quaranta V. Microenvironment driven invasion: a multiscale multimodel investigation. Journal of mathematical biology. 2009; 58:579-624. doi: 10.1007/s00285-008-0210-2.
  2. Levitas V.I., Javanbakht M. Phase-field approach to martensitic phase transformations: Effect of martensite-martensite interface energy. Int. J. Mate. Res. 2011;102(6):652-665. doi: 10.3139/146.110529.
  3. Levitas V.I., Preston D.L., Lee D.W. Three-dimensional Landau theory for multivarient sress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Phys. Rev. B. 2003; 68(13): 134201. doi: 10.1103/PhysRevB.68.134201.

ارتقاء امنیت وب با وف بومی