Various functions can serve as weight functions in the numerical solution of nonlocal problems, including the error function. The value of the error function at a given point depends on the nonlocal parameter and the distance from the target point. To reduce computational costs in numerical procedures, interactions are often neglected between the points with a distance above a specific radius (interaction radius). Consequently, a relationship between the radius and the nonlocal parameter in the error function is established to determine the optimal interaction radius. Due to the widespread utilization of the finite element method in the solution of non-local problems, and considering application of the integral value of the weight function in two-phase kernels, the effect of element size on the calculation of the integral value is investigated. The findings indicate that, due to discretization, the error in calculating the integral value of the weight function increases as the ratio of the element size to the nonlocal parameter grows. This can result in an integral value exceeding 1, thereby violating the normalization condition of the weight function.
Lai WM, Rubin D, and Krempl E. Introduction to continuum mechanics. Oxford: Butterworth-Heinemann; 2009. https://doi.org/10.1016/B978-0-7506-8560-3.X0001-1.
Lemaitre J. A course on damage mechanics. Berlin: Springer-Verlag; 1992. https://doi.org/10.1007/978-3-642-18255-6.
Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 1972; 10(5): 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.
Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983; 54(9): 4703-4710. https://doi.org/10.1063/1.332803.
Eringen AC, Edelen D. On nonlocal elasticity. Int. J. Eng. Sci. 1972; 10(3): 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.
Lim C, Zhang G, Reddy J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 2015; 78: 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
Bažant ZP, Jirásek M. Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 2002; 128(11): 1119-1149. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119).
Eringen AC. On nonlocal plasticity. Int. J. Eng. Sci. 1981; 19(12): 1461-1474. https://doi.org/10.1016/0020-7225(81)90072-0.
Jirásek M, Rolshoven S. Comparison of integral-type nonlocal plasticity models for strain-softening materials. Int. J. Eng. Sci. 2003; 41(13-14): 1553-1602. https://doi.org/10.1016/S0020-7225(03)00027-2.
Bažant ZP. Why continuum damage is nonlocal: Micromechanics arguments. J. Eng. Mech. 1991; 117(5): 1070-1087. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:5(1070).
Giry C, Dufour F, Mazars J. Stress-based nonlocal damage model. Int. J. Solids Struct. 2011; 48(25-26): 3431-3443. https://doi.org/10.1016/j.ijsolstr.2011.08.012.
Jirasek M. Nonlocal models for damage and fracture: comparison of approaches. Int. J. Solids Struct. 1998; 35(31-32): 4133-4145. https://doi.org/10.1016/S0020-7683(97)00306-5.
Reddy J. Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 2007; 45(2-8): 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
Ebrahimi F, Reza Barati M. Vibration analysis of nonlocal beams made of functionally graded material in thermal environment. Eur. Phys. J. Plus 2016; 131(8): 279. https://doi.org/10.1140/epjp/i2016-16279-y.
Salehipour H, Shahidi A Nahvi H. Modified nonlocal elasticity theory for functionally graded materials. Int. J. Eng. Sci. 2015; 90: 44-57. https://doi.org/10.1016/j.ijengsci.2015.01.005.
Zhu X, Li L. Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 2017; 178: 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067.
Aydogdu M. A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Phys. E 2009; 41(9): 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
Eptaimeros K, Koutsoumaris CC, Tsamasphyros, G. Nonlocal integral approach to the dynamical response of nanobeams. Int. J. Mech. Sci. 2016; 115: 68-80. https://doi.org/10.1016/j.ijmecsci.2016.06.013.
Ke LL, Wang YS, Wang ZD. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 2012; 94(6): 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023.
Norouzzadeh A, Ansari R, Rouhi H. An analytical study on wave propagation in functionally graded nano-beams/tubes based on the integral formulation of nonlocal elasticity. Waves Random and Complex Media 2020; 30(3): 562-580. https://doi.org/10.1080/17455030.2018.1543979.
Romano G, Barretta R, Diaco M. On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 2017; 131: 490-499. https://doi.org/10.1016/j.ijmecsci.2017.07.013.
Thai HT. A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int. J. Eng. Sci. 2012; 52: 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
Ansari R, Torabi J, Norouzzadeh A. Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method. Phys. B 2018; 534: 90-97. https://doi.org/10.1016/j.physb.2018.01.025.
Reddy J, Pang S. Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 2008; 103(2): 023511. https://doi.org/10.1063/1.2833431.
Bažant ZP, Lin FB. Nonlocal smeared cracking model for concrete fracture. J. Struct. Eng. 1988; 114(11): 2493-2510. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:11(2493).
Peerlings RD, De Borst R, Brekelmans W, Geers M. Localisation issues in local and nonlocal continuum approaches to fracture. Eur. J. Mech. A/Solids 2002; 21(2): 175-189. https://doi.org/10.1016/S0997-7538(02)01211-1.
Polizzotto C. Thermodynamics and continuum fracture mechanics for nonlocal-elastic plastic materials. Eur. J. Mech. A/Solids 2002; 21(1): 85-103. https://doi.org/10.1016/S0997-7538(01)01200-1.
Abdollahi R, Boroomand B. On using mesh-based and mesh-free methods in problems defined by Eringen’s non-local integral model: issues and remedies. Meccanica 2019; 54(11): 1801-1822. https://doi.org/10.1007/s11012-019-01048-6.
Danesh H, Javanbakht M, Mirzakhani S. Nonlocal integral elasticity based phase field modelling and simulations of nanoscale thermal-and stress-induced martensitic transformations using a boundary effect compensation kernel. Comput. Mater. Sci. 2021; 194: 110429. https://doi.org/10.1016/j.commatsci.2021.110429.
Polizzotto C. Nonlocal elasticity and related variational principles. Int. J. Solids Struct. 2001; 38(42-43): 7359-7380. https://doi.org/10.1016/S0020-7683(01)00039-7.
Pisano A, Sofi A, Fuschi P. Nonlocal integral elasticity: 2D finite element based solutions. Int. J. Solids Struct. 2009; 46(21): 3836-3849. https://doi.org/10.1016/j.ijsolstr.2009.07.009.
Borino G, Failla B, Parrinello F. A symmetric nonlocal damage theory. Int. J. Solids Struct. 2003; 40(13-14): 3621-3645. https://doi.org/10.1016/S0020-7683(03)00144-6.
Jirásek M, Marfia S. Non‐local damage model based on displacement averaging. Int. J. Numer. Methods Eng. 2005; 63(1): 77-102. https://doi.org/10.1002/nme.1262.
Polizzotto C, Fuschi P, Pisano A. A strain-difference-based nonlocal elasticity model. Int. J. Solids Struct. 2004; 41(9-10): 2383-2401. https://doi.org/10.1016/j.ijsolstr.2003.12.013.
Danesh H, Javanbakht M, Barchiesi E, Hamila N. Coupled phase field and nonlocal integral elasticity analysis of stress-induced martensitic transformations at the nanoscale: boundary effects, limitations and contradictions. Continuum Mech. Thermodyn. 2023; 35(3): 1041-1062. https://doi.org/10.1007/s00161-021-01042-y.
Javanbakht M, Mirzakhani S, Silani M. Local vs. nonlocal integral elasticity-based phase field models including surface tension and simulations of single and two variant martensitic transformations and twinning. Eng. Comput. 2023; 39(1): 489-503. https://doi.org/10.1007/s00366-021-01598-y.
Gerami, A. , silani, M. and Javanbakht, M. (2025). On the Use of Error Weight Function in the Numerical Solution of Nonlocal Problems Using the Finite Element Method. Journal of Computational Methods in Engineering, 44(2), 151-165. doi: 10.47176/jcme.44.2.1062
MLA
Gerami, A. , , silani, M. , and Javanbakht, M. . "On the Use of Error Weight Function in the Numerical Solution of Nonlocal Problems Using the Finite Element Method", Journal of Computational Methods in Engineering, 44, 2, 2025, 151-165. doi: 10.47176/jcme.44.2.1062
HARVARD
Gerami, A., silani, M., Javanbakht, M. (2025). 'On the Use of Error Weight Function in the Numerical Solution of Nonlocal Problems Using the Finite Element Method', Journal of Computational Methods in Engineering, 44(2), pp. 151-165. doi: 10.47176/jcme.44.2.1062
CHICAGO
A. Gerami , M. silani and M. Javanbakht, "On the Use of Error Weight Function in the Numerical Solution of Nonlocal Problems Using the Finite Element Method," Journal of Computational Methods in Engineering, 44 2 (2025): 151-165, doi: 10.47176/jcme.44.2.1062
VANCOUVER
Gerami, A., silani, M., Javanbakht, M. On the Use of Error Weight Function in the Numerical Solution of Nonlocal Problems Using the Finite Element Method. Journal of Computational Methods in Engineering, 2025; 44(2): 151-165. doi: 10.47176/jcme.44.2.1062