- Hahn, D. W. and Ozisik, M. N. Heat Conduction, 3rd Edition, Wiley, 2012.
- Trostel R. Wärmespannungen in Hohlzylindern mit temperaturabhängigen Stoffwerten. Ingenieur-Archiv. 1958; 26: 134-142.
https://doi.org/10.1007/BF00535731
- Trostel, R. Stationäre Wärmespannungen mit temperaturabhängigen Stoffwerten. Ingenieur-Archiv. 1958; 26: 416-434.
https://doi.org/10.1007/BF00533455
- Stanisic, M. M. and McKinley, R. M. A note on the thermal stresses in hollow cylinders. Ingenieur-Archiv. 1959; 27: 227–241.
https://doi.org/10.1007/BF00538344
- Stanisic, M. M. and McKinley, R. M. On the steady thermoelastic problems with elastic characteristics depending on temperature. Ingenieur-Archiv, 1960; 29: 260-261.
https://doi.org/10.1007/BF00536708
- Stanisic, M. M. and McKinley, R. M. The steady-state thermal stress field in an isotropic sphere with temperature dependent properties. Ingenieur-Archiv. 1962: 31: 241-249.
https://doi.org/10.1007/BF00536721
- Krizek, M. and Liu, L. Finite element approximation of a nonlinear heat conduction problem in anisotropic media. Computer Methods in Applied Mechanics and Engineering. 1998; 157: 387-397. https://doi.org/10.1016/S0045-7825(97)00247-8
- Karageorghis, A. and Lesnic, D. Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions. Computer Methods in Applied Mechanics and Engineering. 2008; 197: 3122-3137.
https://doi.org/10.1016/j.cma.2008.02.011
- Moosaie, A. Steady symmetrical temperature field in a hollow spherical particle with temperature-dependent thermal conductivity. Archives of Mechanics. 2012; 64: 405-422.
https://am.ippt.pan.pl/index.php/am/article/view/v64p405
- Moosaie, A. Axisymmetric steady temperature field in FGM cylindrical shells with temperature-dependent heat conductivity and arbitrary linear boundary conditions. Archives of Mechanics. 2015; 67: 233-251,.
https://am.ippt.pan.pl/index.php/am/article/view/v67p233
- Moosaie, A. A nonlinear analysis of thermal stresses in an incompressible functionally graded hollow cylinder with temperature-dependent material properties. European Journal of Mechanics A/Solids. 2016; 55: 212-220.
https://doi.org/10.1016/j.euromechsol.2015.09.005
- Moosaie, A. and Panahi-Kalus, H. Thermal stresses in an incompressible FGM spherical shell with temperature-dependent material properties. Thin-Walled Structures, 2017; 120: 215-224.
https://doi.org/10.1016/j.tws.2017.09.005
- Tang, L., Gao, T., Song, L., Meng, L., Zhang, C. and Zhang, W. Topology optimization of nonlinear heat conduction problems involving large temperature gradient. Computer Methods in Applied Mechanics and Engineering, 2019; 357: 112600.
https://doi.org/10.1016/j.cma.2019.112600
- Yarimpabuc, D. Nonlinear thermal stress analysis of functionally graded thick cylinders and spheres. Iranian Journal of Science and Technology Transactions of Mechanical Engineering, 2021; 45: 655-663.
https://doi.org/10.1007/s40997-020-00395-0
- Dowty, E. L. and Haworth, D. R. Generalized solutions for transient heat conduction with variable conductivity. Nuclear Engineering and Design. 1967; 6: 57-64.
https://doi.org/10.1016/0029-5493(67)90046-5
- Katayama, K., Hattori, M., Okada, M. and Kotake, S. Numerical method of transient heat conduction with temperature dependent thermal properties. Bulletin of JSME, 1972; 15: 1394-1401.
https://doi.org/10.1299/jsme1958.15.1394
- Comini, G., Del Guidice, S., Lewis, R. W. and Zienkiewicz, O. C. Finite element solution of non-linear heat conduction problems with special reference to phase change. International Journal for Numerical Methods in Engineering, 1974; 8: 613-624. https://doi.org/10.1002/nme.1620080314
- Hughes, T. J. R. Unconditionally stable algorithms for nonlinear heat conduction. Computer Methods in Applied Mechanics and Engineering, 1977; 10: 135-139.
https://doi.org/10.1016/0045-7825(77)90001-9
- Thomas, B. G., Samarasekera, I. V. and Brimacombe, J. K. Comparison of numerical modeling techniques for complex, two-dimensional, transient heat-conduction problems. Metallurgical Transactions B. 1984; 15: 307-318. https://doi.org/10.1007/BF02667334
- Winget, J. M. and Hughes, T. J. R. Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies. Computer Methods in Applied Mechanics and Engineering, 1985; 52: 711-815. https://doi.org/10.1016/0045-7825(85)90015-5
- Kikuta, M., Togoh, H. and Tanaka, M. Boundary element analysis of nonlinear transient heat conduction problems. Computer Methods in Applied Mechanics and Engineering, 1987; 62: 321-329.
- https://doi.org/10.1016/0045-7825(87)90066-1
- Tanigawa, Y., Akai, T., Kawamura, R. and Oka, N. Transient heat conduction and thermal stress problems of a nonhomogeneous plate with temperature-dependent material properties. Journal of Thermal Stresses, 1996; 19: 77-102. https://doi.org/10.1080/01495739608946161
- Chen, B., Gu, Y., Guan, Z. and Zhang, H. Nonlinear transient heat conduction analysis with precise time integration method. Numerical Heat Transfer Part B, 2001; 40: 325-341.
https://doi.org/10.1080/104077901317091712
- Fic, A., Bialecki, R. A. and Kassab, A. J. Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method. Numerical Heat Transfer Part B. 2005; 48: 103-124.
https://doi.org/10.1080/10407790590935920
- Curi, M. and Zotin, J. Transient heat transfer analysis of fins with variable surface area and temperature-dependent thermal conductivity using an integral transform technique. arXiv. 2010: 14506.
https://doi.org/10.48550/arXiv.2010.14506
- Mustafa, M. T., Arif, A. F. M. and Masood, K. Approximate analytic solutions of transient nonlinear heat conduction with temperature-dependent thermal diffusivity. Abstract and Applied Analysis. 2014; 2014:423421.
https://doi.org/10.1155/2014/423421
- Mosayebidorcheh, S., Farzinpoor, M. and Ganji, D. D. Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent proper ties and different fin profiles. Energy Conversion and Management. 2014; 86: 365-370.
https://doi.org/10.1016/j.enconman.2014.05.033
- Demirbas, M. D. Thermal stress analysis of functionally graded plates with temperature-dependent material properties using theory of elasticity. Composites Part B: Engineering, 2017; 131: 100-124.
https://doi.org/10.1016/j.compositesb.2017.08.005
- Bahadori, R., Gutierrez, H., Manikonda, S. and Meinke, R. Two-dimensional transient heat conduction in multi-layered composite media with temperature dependent thermal diffusivity using floating random walk Monte-Carlo method. International Journal of Heat and Mass Transfer. 2017; 115: 570-580.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.071
- Cimmelli, V. A., Jou, D. and Sellitto, A. Nonlinear thermoelastic waves in functionally graded materials: Application to Si1−cGec nanowires. Journal of Thermal Stresses, 2020; 43:, 612-628. https://doi.org/10.1080/01495739.2020.1730283
- Jiang, G., Liu, H., Yang, K. and Gao, X. A fast reduced-order model for radial integral boundary element method based on proper orthogonal decomposition in nonlinear transient heat conduction problems. Computer Methods in Applied Mechanics and Engineering. 2020; 368: 113190. https://doi.org/10.1016/j.cma.2020.113190
- Suvin, V. S., Ooi, E. T., Song, C. and Natarajan, S. Temperature-dependent nonlinear transient heat conduction using the scaled boundary finite element method. International Journal of Heat and Mass Transfer. 2025; 243: 126780.
https://doi.org/10.1016/j.ijheatmasstransfer.2025.126780
- Cui, M., Zhu, Q. and Gao, X. A modified conjugate gradient method for transient nonlinear inverse heat conduction problems: a case study for identifying temperature dependent thermal conductivities. ASME Journal of Heat Transfer. 2014; 136: 091301.
https://doi.org/10.1115/1.4027771
- Dadar, N., Hematiyan, M. R., Khosravifard, A. and Shiah, Y. C. An inverse meshfree thermoelastic analysis for identification of temperature-dependent thermal and mechanical material properties. Journal of Thermal Stresses. 2020; 43: 1165-1188.
https://doi.org/10.1080/01495739.2020.1775534
- Chiam, T. C. Heat transfer in a fluid with variable conductivity over a linearly stretching sheet. Acta Mechanica. 1998; 129: 63-72.
https://doi.org/10.1007/BF01379650
- Hossain, M. A., Munir, M. S. and Rees, D. A. S. Flow of viscous incompressible fluid with temperature-dependent viscosity and thermal conductivity past a permeable wedge with uniform surface heat flux. International Journal of Thermal Sciences. 2000; 39: 635-644.
https://doi.org/10.1016/S1290-0729(00)00227-1
- Dehghan, M. Valipour, M. S. and Saedodin, S. Temperature-dependent conductivity in forced convection of heat exchangers filled with porous media: A perturbation solution. Energy Conversion and Management. 2015; 91: 259-266, 2015. https://doi.org/10.1016/j.enconman.2014.12.011
- Panahi-Kalus, H., Ahmadinejad, M. and Moosaie, A. The effect of temperature-dependent viscosity and thermal conductivity on velocity and temperature field: an analytical solution using the perturbation technique. Archives of Mechanics. 2020; 72: 555-576.
https://doi.org/10.24423/aom.3618
- Carollo, L. F. D. S., Silva, A. L. F. L. and Silva, S. M. M. L. A different approach to estimate temperature-dependent thermal properties of metallic materials. Materials, 2019; 12: 2579.
https://doi.org/10.3390/ma12162579
- Williamson, J. H. Low-storage Runge-Kutta schemes. Journal of Computational Physics, 1980; 35: 48-56.
https://doi.org/10.1016/0021-9991(80)90033-9
- Shafie, Sh., Rahmani, B., Moosaie, A. and Panahi-Kalus, H. Distributed control of nonlinear conductivity heat transfer equation in a thick functionally graded plate. International Communications in Heat and Mass Transfer. 2022; 130: 105786.
https://doi.org/10.1016/j.icheatmasstransfer.2021.105786
- Dyke, M. V. Perturbation Methods in Fluid Mechanics, The Parabolic Press. Stanford, California;, New York; 1975.
https://doi.org/10.1002/zamm.19770570122
- Nayfeh, A. H., Perturbation Methods, WILEY-VCH Verlag, New York; 2000.
https://doi.org/10.1002/9783527617609