Modeling of Transient Nonlinear Heat Conduction with Temperature-Dependent Material Properties

Document Type : Original Article

Author

Department of Mechanical Engineering, Isfahan University of Technology

Abstract

In recent years, growing attention has been directed toward developing more realistic physical models for simulating complex and technically significant problems. This approach often leads to the formulation of nonlinear, multidimensional, and highly intricate models, whose analysis and solution require advanced numerical and analytical techniques. One of the most notable examples in this context is the transient and nonlinear heat conduction problem with temperature-dependent material properties. This paper presents, analyzes, and evaluates a comprehensive set of possible mathematical models for simulating this phenomenon, some of which are introduced here for the first time. Special emphasis is placed on the application of the Kirchhoff integral transform, typically used in steady-state nonlinear problems, and its precise implementation under transient conditions is thoroughly investigated. Based on this transform, both linear and nonlinear models are derived and compared. The linear models are particularly valuable due to their ability to yield accurate analytical solutions, facilitate inverse heat conduction analyses, enable temperature field control strategies, and offer clearer physical interpretations. Additionally, three new nonlinear models are proposed, two of which demonstrate very high accuracy, while the third, despite its lower precision, provides superior computational simplicity and faster performance. The findings of this study can serve as a foundation for developing more advanced thermal models and optimizing the design of engineering heat transfer systems

Keywords

Main Subjects


  1. Hahn, D. W. and Ozisik, M. N. Heat Conduction, 3rd Edition, Wiley, 2012.
  2. Trostel R. Wärmespannungen in Hohlzylindern mit temperaturabhängigen Stoffwerten. Ingenieur-Archiv. 1958; 26: 134-142.

https://doi.org/10.1007/BF00535731

  1. Trostel, R. Stationäre Wärmespannungen mit temperaturabhängigen Stoffwerten. Ingenieur-Archiv. 1958; 26: 416-434.

https://doi.org/10.1007/BF00533455

  1. Stanisic, M. M. and McKinley, R. M. A note on the thermal stresses in hollow cylinders. Ingenieur-Archiv. 1959; 27: 227–241.

https://doi.org/10.1007/BF00538344

  1. Stanisic, M. M. and McKinley, R. M. On the steady thermoelastic problems with elastic characteristics depending on temperature. Ingenieur-Archiv, 1960; 29: 260-261.

https://doi.org/10.1007/BF00536708

  1. Stanisic, M. M. and McKinley, R. M. The steady-state thermal stress field in an isotropic sphere with temperature dependent properties. Ingenieur-Archiv. 1962: 31: 241-249.

https://doi.org/10.1007/BF00536721

  1. Krizek, M. and Liu, L. Finite element approximation of a nonlinear heat conduction problem in anisotropic media. Computer Methods in Applied Mechanics and Engineering. 1998; 157: 387-397. https://doi.org/10.1016/S0045-7825(97)00247-8
  2. Karageorghis, A. and Lesnic, D. Steady-state nonlinear heat conduction in composite materials using the method of fundamental solutions. Computer Methods in Applied Mechanics and Engineering. 2008; 197: 3122-3137.

https://doi.org/10.1016/j.cma.2008.02.011

  1. Moosaie, A. Steady symmetrical temperature field in a hollow spherical particle with temperature-dependent thermal conductivity. Archives of Mechanics. 2012; 64: 405-422.

https://am.ippt.pan.pl/index.php/am/article/view/v64p405

  1. Moosaie, A. Axisymmetric steady temperature field in FGM cylindrical shells with temperature-dependent heat conductivity and arbitrary linear boundary conditions. Archives of Mechanics. 2015; 67: 233-251,.

https://am.ippt.pan.pl/index.php/am/article/view/v67p233

  1. Moosaie, A. A nonlinear analysis of thermal stresses in an incompressible functionally graded hollow cylinder with temperature-dependent material properties. European Journal of Mechanics A/Solids. 2016; 55: 212-220.

      https://doi.org/10.1016/j.euromechsol.2015.09.005

  1. Moosaie, A. and Panahi-Kalus, H. Thermal stresses in an incompressible FGM spherical shell with temperature-dependent material properties. Thin-Walled Structures, 2017; 120: 215-224.

https://doi.org/10.1016/j.tws.2017.09.005

  1. Tang, L., Gao, T., Song, L., Meng, L., Zhang, C. and Zhang, W. Topology optimization of nonlinear heat conduction problems involving large temperature gradient. Computer Methods in Applied Mechanics and Engineering, 2019; 357: 112600.

 https://doi.org/10.1016/j.cma.2019.112600

  1. Yarimpabuc, D. Nonlinear thermal stress analysis of functionally graded thick cylinders and spheres. Iranian Journal of Science and Technology Transactions of Mechanical Engineering, 2021; 45: 655-663.

 https://doi.org/10.1007/s40997-020-00395-0

  1. Dowty, E. L. and Haworth, D. R. Generalized solutions for transient heat conduction with variable conductivity. Nuclear Engineering and Design. 1967; 6: 57-64.

 https://doi.org/10.1016/0029-5493(67)90046-5

  1. Katayama, K., Hattori, M., Okada, M. and Kotake, S. Numerical method of transient heat conduction with temperature dependent thermal properties. Bulletin of JSME, 1972; 15: 1394-1401.

https://doi.org/10.1299/jsme1958.15.1394

  1. Comini, G., Del Guidice, S., Lewis, R. W. and Zienkiewicz, O. C. Finite element solution of non-linear heat conduction problems with special reference to phase change. International Journal for Numerical Methods in Engineering, 1974; 8: 613-624. https://doi.org/10.1002/nme.1620080314
  2. Hughes, T. J. R. Unconditionally stable algorithms for nonlinear heat conduction. Computer Methods in Applied Mechanics and Engineering, 1977; 10: 135-139.

 https://doi.org/10.1016/0045-7825(77)90001-9

  1. Thomas, B. G., Samarasekera, I. V. and Brimacombe, J. K. Comparison of numerical modeling techniques for complex, two-dimensional, transient heat-conduction problems. Metallurgical Transactions B. 1984; 15: 307-318. https://doi.org/10.1007/BF02667334
  2. Winget, J. M. and Hughes, T. J. R. Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies. Computer Methods in Applied Mechanics and Engineering, 1985; 52: 711-815. https://doi.org/10.1016/0045-7825(85)90015-5
  3. Kikuta, M., Togoh, H. and Tanaka, M. Boundary element analysis of nonlinear transient heat conduction problems. Computer Methods in Applied Mechanics and Engineering, 1987; 62: 321-329.
  4. https://doi.org/10.1016/0045-7825(87)90066-1
  5. Tanigawa, Y., Akai, T., Kawamura, R. and Oka, N. Transient heat conduction and thermal stress problems of a nonhomogeneous plate with temperature-dependent material properties. Journal of Thermal Stresses, 1996; 19: 77-102. https://doi.org/10.1080/01495739608946161
  6. Chen, B., Gu, Y., Guan, Z. and Zhang, H. Nonlinear transient heat conduction analysis with precise time integration method. Numerical Heat Transfer Part B, 2001; 40: 325-341.

https://doi.org/10.1080/104077901317091712

  1. Fic, A., Bialecki, R. A. and Kassab, A. J. Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method. Numerical Heat Transfer Part B. 2005; 48: 103-124.

 https://doi.org/10.1080/10407790590935920

  1. Curi, M. and Zotin, J. Transient heat transfer analysis of fins with variable surface area and temperature-dependent thermal conductivity using an integral transform technique. arXiv. 2010: 14506.

https://doi.org/10.48550/arXiv.2010.14506

  1. Mustafa, M. T., Arif, A. F. M. and Masood, K. Approximate analytic solutions of transient nonlinear heat conduction with temperature-dependent thermal diffusivity. Abstract and Applied Analysis. 2014; 2014:423421.

https://doi.org/10.1155/2014/423421

  1. Mosayebidorcheh, S., Farzinpoor, M. and Ganji, D. D. Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent proper ties and different fin profiles. Energy Conversion and Management. 2014; 86: 365-370.

https://doi.org/10.1016/j.enconman.2014.05.033

  1. Demirbas, M. D. Thermal stress analysis of functionally graded plates with temperature-dependent material properties using theory of elasticity. Composites Part B: Engineering, 2017; 131: 100-124.

      https://doi.org/10.1016/j.compositesb.2017.08.005

  1. Bahadori, R., Gutierrez, H., Manikonda, S. and Meinke, R. Two-dimensional transient heat conduction in multi-layered composite media with temperature dependent thermal diffusivity using floating random walk Monte-Carlo method. International Journal of Heat and Mass Transfer. 2017; 115: 570-580.

https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.071

  1. Cimmelli, V. A., Jou, D. and Sellitto, A. Nonlinear thermoelastic waves in functionally graded materials: Application to Si1−cGec nanowires. Journal of Thermal Stresses, 2020; 43:, 612-628. https://doi.org/10.1080/01495739.2020.1730283
  2. Jiang, G., Liu, H., Yang, K. and Gao, X. A fast reduced-order model for radial integral boundary element method based on proper orthogonal decomposition in nonlinear transient heat conduction problems. Computer Methods in Applied Mechanics and Engineering. 2020; 368: 113190. https://doi.org/10.1016/j.cma.2020.113190
  3. Suvin, V. S., Ooi, E. T., Song, C. and Natarajan, S. Temperature-dependent nonlinear transient heat conduction using the scaled boundary finite element method. International Journal of Heat and Mass Transfer. 2025; 243: 126780.

https://doi.org/10.1016/j.ijheatmasstransfer.2025.126780

  1. Cui, M., Zhu, Q. and Gao, X. A modified conjugate gradient method for transient nonlinear inverse heat conduction problems: a case study for identifying temperature dependent thermal conductivities. ASME Journal of Heat Transfer. 2014; 136: 091301.

https://doi.org/10.1115/1.4027771

  1. Dadar, N., Hematiyan, M. R., Khosravifard, A. and Shiah, Y. C. An inverse meshfree thermoelastic analysis for identification of temperature-dependent thermal and mechanical material properties. Journal of Thermal Stresses. 2020; 43: 1165-1188.

https://doi.org/10.1080/01495739.2020.1775534

  1. Chiam, T. C. Heat transfer in a fluid with variable conductivity over a linearly stretching sheet. Acta Mechanica. 1998; 129: 63-72.

 https://doi.org/10.1007/BF01379650

  1. Hossain, M. A., Munir, M. S. and Rees, D. A. S. Flow of viscous incompressible fluid with temperature-dependent viscosity and thermal conductivity past a permeable wedge with uniform surface heat flux. International Journal of Thermal Sciences. 2000; 39: 635-644.

https://doi.org/10.1016/S1290-0729(00)00227-1

  1. Dehghan, M. Valipour, M. S. and Saedodin, S. Temperature-dependent conductivity in forced convection of heat exchangers filled with porous media: A perturbation solution. Energy Conversion and Management. 2015; 91: 259-266, 2015. https://doi.org/10.1016/j.enconman.2014.12.011
  2. Panahi-Kalus, H., Ahmadinejad, M. and Moosaie, A. The effect of temperature-dependent viscosity and thermal conductivity on velocity and temperature field: an analytical solution using the perturbation technique. Archives of Mechanics. 2020; 72: 555-576.

https://doi.org/10.24423/aom.3618

  1. Carollo, L. F. D. S., Silva, A. L. F. L. and Silva, S. M. M. L. A different approach to estimate temperature-dependent thermal properties of metallic materials. Materials, 2019; 12: 2579.

https://doi.org/10.3390/ma12162579

  1. Williamson, J. H. Low-storage Runge-Kutta schemes. Journal of Computational Physics, 1980; 35: 48-56.

https://doi.org/10.1016/0021-9991(80)90033-9

  1. Shafie, Sh., Rahmani, B., Moosaie, A. and Panahi-Kalus, H. Distributed control of nonlinear conductivity heat transfer equation in a thick functionally graded plate. International Communications in Heat and Mass Transfer. 2022; 130: 105786.

https://doi.org/10.1016/j.icheatmasstransfer.2021.105786

  1. Dyke, M. V. Perturbation Methods in Fluid Mechanics, The Parabolic Press. Stanford, California;, New York; 1975.

https://doi.org/10.1002/zamm.19770570122

  1. Nayfeh, A. H., Perturbation Methods, WILEY-VCH Verlag, New York; 2000.

 https://doi.org/10.1002/9783527617609

ارتقاء امنیت وب با وف بومی