بررسی قابلیت اطمینان برداشت انرژی از امواج دریا به‌وسیله تیر پیزوالکتریک با درنظر گرفتن تئوری موج تصادفی جانسواپ

نویسنده

دانشکده مهندسی مکانیک، دانشگاه تبریز، تبریز

چکیده

یکی از روش‌های جدید برای تأمین انرژی سیستم‌های الکتریکی کم مصرف مورد استفاده در دریا، استفاده از انرژی مکانیکی امواج است. در این روش با استفاده از مبدل پیزوالکتریک، انرژی ناشی از امواج دریا به الکتریسیته تبدیل می‌شود. مزیت این روش عدم نیاز به تعویض یا شارژ باتری سیستم مورد نظر است. در تحقیقات پیشین، مطالعاتی در زمینه برداشت انرژی از امواج دریا انجام شده ولی تحقیقی کامل در زمینه برداشت انرژی با درنظر گرفتن مدل موج تصادفی جانسواپ انجام نشده است. مدل موج تصادفی جانسواپ تقریب بهتری برای شبیه‌سازی امواج دریا نسبت به مدل موج منظم ایری است. به‌همین منظور در این مقاله یک تیر قائم متصل به کف دریا که مجهز به وصله‌های پیزوالکتریک است، به‌عنوان برداشت کننده انرژی درنظر گرفته شده و بعد از مدل‌سازی با استفاده از نرم‌افزار متلب شبیه‌سازی می‌شود. در ادامه با درنظر گرفتن مدل موج نامنظم جانسواپ پاسخ ارتعاشی تیر و به تبع آن توان تولیدی محاسبه شده و قابلیت اطمینان سیستم و تأثیر مقدار نامعینی‌های وصله‌های پیزوالکتریک روی توان تولیدی به‌صورت آماری بررسی می‌شود. درنهایت احتمال خرابی برداشت کننده انرژی بر پایه تعریف مناسبی از معیار تخطی مطالعه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Reliability Study of Energy Harvesting from Sea Waves by Piezoelectric Patches Consideraing Random JONSWAP Wave Theory

نویسنده [English]

  • M. Ettefagh
چکیده [English]

One of the new methods for powering low-power electronic devices employed in the sea, is using of mechanical energies of sea waves. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on not implementing the battery charging system. Although, many studies have been done about energy harvesting from sea waves, energy harvesting with considering random JONWSAP wave theory is not fully studied up to now. The random JONSWAP wave model is a more realistic approximation of sea waves in comparison of Airy wave model. Therefore, in this paper a vertical beam with the piezoelectric patches, which is fixed to the seabed, is considered as energy harvester system. The energy harvesting system is simulated by MATLAB software, and then the vibration response of the beam and consequently the generated power is obtained considering the JONWSAP wave theory. In addition, the reliability of the system and the effect of piezoelectric patches uncertainties on the generated power are studied by statistical method. Furthermore, the failure possibility of harvester based on violation criteria is investigated.


 

کلیدواژه‌ها [English]

  • energy harvesting
  • Piezoelectric
  • Random JONSWAP wave theory
  • Reliability
1. Hamilton, M. C., “Recent Advances in Energy Harvesting Technology and Techniques”, Annual Conference on IEEE Industrial Electronics Society, pp. 6297-6304, 2012.
2. Kim, H. S., Kim, J.-H., and Kim, J., “A Review of Piezoelectric Energy Harvesting Based on Vibration”, International Journal of Precision Engineering and Manufacturing, Vol. 12, No. 6, pp. 1129-1141, 2011.
3. Smits, J. G., and Choi, W., “The Constituent Equations of Piezoelectric Heterogeneous Bimorphs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 38, No. 3, pp. 256-270, 1991.
4. Erturk, A., “Piezoelectric Energy Harvesting for Civil Infrastructure System Applications: Moving Loads and Surface Strain Fluctuations”, Journal of Intelligent Material Systems and Structures, Vol. 22, No. 17, pp. 1959-1973, 2011.
5. Kim, S.-H., Ahn, J.-H., Chung, H.-M., and Kang, H.-W., “Analysis of Piezoelectric Effects on Various Loading Conditions for Energy Harvesting in a Bridge System”, Sensors and Actuators A: Physical, Vol. 167, No. 2, pp. 468-483, 2011.
6. Wu, X., and Lee, D.-W., “An Electromagnetic Energy Harvesting Device Based on High Efficiency Windmill Structure for Wireless Forest Fire Monitoring Application”, Sensors and Actuators A: Physical, Vol. 219, pp. 73-79, 2014.
7. Wang, H., and Zou, L., “Interfacial Effect on the Electromechanical Behaviors of Piezoelectric/Elastic Composite Smart Beams”, Journal of Intelligent Material Systems and Structures, Vol. 24, No. 4, pp. 421-430, 2013.
8. Taylor, G. W., Burns, J. R., Kammann, S. M., Powers, W. B., and Wel, T. R., “The Energy Harvesting Eel: A Small Subsurface Ocean/River Power Generator”, Oceanic Engineering, IEEE Journal, Vol. 26, No. 4, pp. 539-547, 2001.
9. Zurkinden, A., Campanile, F., and Martinelli, L., “Wave Energy Converter Through Piezoelectric Polymers”, Proceeding of the COMSOL Users Conference, Grenoble, 2007.
10. Murray, R., and Rastegar, J., “Novel Two-Stage Piezoelectric-Based Ocean Wave Energy Harvesters for Moored or Unmoored Buoys”, Proceeding of International Society for Optics and Photonics, pp. 72880E-72880E-12, 2009.
11. Xie, X., Wang, Q., and Wu, N., “Energy Harvesting from Transverse Ocean Waves by a Piezoelectric Plate”, International Journal of Engineering Science, Vol. 81, pp. 41-48, 2014.
12. Xie, X., Wang, Q., Wu, N., “Potential of a Piezoelectric Energy Harvester from Sea Waves”, Journal of Sound and Vibration, Vol. 333, No. 5, pp. 1421-1429, 2014.
13. Morison, J., Johnson, J., and Schaaf, S., “The Force Exerted by Surface Waves on Piles”, Journal of Petroleum Technology, Vol. 2, No. 5, pp. 149-154, 1950.
14. Liu, Z., and Frigaard, P., Generation and Analysis of Random Waves, Aalborg University Press, Denmark, 2001.
15. Han, S., and Benaroya, H., “Non-Linear Coupled Transverse and Axial Vibration of a Compliant Structure, Part 2: Forced Vibration”, Journal of Sound and Vibration, Vol. 237, No. 5, pp. 875-900, 2000.
16. Haritos, N., “Introduction to the Analysis and Design of Offshore Structures-an Overview”, Electronic Journal of Structural Engineering, Vol. 7, pp. 55-65, 2007.
17. Adrezin, R., and Benaroya, H., “Response of a Tension Leg Platform to Stochastic Wave Forces”, Probabilistic Engineering Mechanics, Vol. 14, No. 1, pp. 3-17, 1999.
18. Son, S., “Design of Ocean platforms Against Ringing Response”, M.S Thesis, Department of Mechanical Engineering, Texas Techniversity, Lubbock, TX, USA, 2006.
19. Carter, D., “Prediction of Wave Height and Period for a Constant Wind Velocity using the JONSWAP Results”, Ocean Engineering, Vol. 9, No. 1, pp. 17-33, 1982.
20. Lee, C.-K., and Moon, F. C., “Modal Sensors/Actuators”, Journal of Applied Mechanics, Vol. 57, No. 2, pp. 434-441, 1990.
21. Johnson, R., and Bhattacharyya, G., Statistical Concepts and Methods, Wiley series in probality and mathematical statistics, 1977.
22. Choi, S.-K., Grandhi, R., and Canfield, R. A., Reliability-based Structural Design, Springer Science & Business Media, 2006.

تحت نظارت وف ایرانی