1. Saville, D. A., “Electrohydrodynamics: The Taylor-Melcher Leaky Dielectric Model”, Annual Review of Fluid Mechanics, Vol. 29, No. 1, pp. 27-64, 1997.
2. Melcher, J. R., and Taylor, G.,I., “Electrohydrodynamics: a Review of the Role of Interfacial Shear Stresses”, Annual Review of Fluid Mechanics, Vol. 1, No. 1, pp. 111-146, 1969.
3. Taylor, G. I., “Electrically Driven Jets”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 313, No. 1515, pp. 453-475, 1969.
4. Castellanos, A. and Gonzalez, A., “Nonlinear Electrohydrodynamics of Free Surfaces”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 5, No. 3, pp. 334-343m 1998.
5. Ha, J. W., and Yang, S. M., “Electrohydrodynamics and Electrorotation of a Drop with Fluid Less Conductive than that of the Ambient Fluid”, Physics of Fluids, Vol. 12, No. 4, pp. 764-772, 2000.
6. Allan, R. S., and Mason, S. G., “Particle Behaviour in Shear and Electric Fields. I. Deformation and Burst of Fluid Drops”, Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, Vol. 267, No. 1328, pp. 45-61, 1962.
7. Taylor, G.I., “Studies in Electrohydrodynamics. I. The Circulation Produced in a Drop by an Electric Field”, Proceedings of the Royal Society of London, Series A. Mathematical and Physical Sciences, Vol. 291, No. 1425, pp. 159-166, 1966.
8. Torza, S., Cox, R. G., and Mason, S. G., “Electrohydrodynamic Deformation and Bursts of Liquid Drops”, Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 269, No. 1198, pp. 295-319, 1971.
9. Lee, S. M., Im, D. J., and Kang, I. S., “Circulating Flows Inside a Drop under Time-Periodic Nonuniform Electric Fields”, Physics of Fluids, Vol. 12, No. 8, pp. 1899-1910, 2000.
10. Trau, M., Sankaran, S., Saville, D. A., and Aksay, I. A., “Pattern Formation in Nonaqueous Colloidal Dispersions Via Electrohydrodynamic Flow”, Langmuir, Vol. 11, No. 12, pp. 4665-4672, 1995.
11. Feng, J.Q., “Electrohydrodynamic Behaviour of a Drop Subjected to a Steady Uniform Electric Field at Finite Electric Reynolds Number”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 455, No. 1986, pp. 2245-2269, 1999.
12. Succi, S., The lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford University Press, 2001.
13. Chen, S., and Doolen, G. D., “Lattice Boltzmann Method for Fluid Flows”, Annual Review of Fluid Mechanics, Vol. 30, No. 1, pp. 329-364, 1998.
14. Hou, S., Shan, X., Zou, Q., Doolen, G. D., and Soll, W.E., “Evaluation of Two Lattice Boltzmann Models for Multiphase Flows”, Journal of Computational Physics, Vol. 138, No. 2, pp. 695-713, 1997.
15. Huang, H., Wang, L. and Lu, X. Y., “Evaluation of Three Lattice Boltzmann Models for Multiphase Flows in Porous Media”, Computers & Mathematics with Applications, Vol. 61, No. 12, pp. 3606-3617, 2011.
16. Zhang, J. and Kwok, D. Y., “A 2D Lattice Boltzmann Study on Electrohydrodynamic Drop Deformation with the Leaky Dielectric Theory”, Journal of Computational Physics, Vol. 206, No. 1, pp. 150-161, 2005.
17. Shan, X. and Chen, H., “Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components”, Physical Review E, Vol. 47, No. 3, p. 1815, 1993.
18. Kupershtokh, A.L. and Medvedev, D. A., “Lattice Boltzmann Equation Method in Electrohydrodynamic Problems”, Journal of Electrostatics, Vol. 64, No. 7-9, pp.581-585, 2006.
19. Singh, R., Bahga, S. S. and Gupta, A., “Electrohydrodynamics in Leaky Dielectric Fluids Using Lattice Boltzmann Method”, European Journal of Mechanics-B/Fluids, Vol. 74, pp. 167-179, 2019.
20. He, X., Chen, S. and Zhang, R., “A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and its Application in Simulation of Rayleigh–Taylor Instability”, Journal of Computational Physics, Vol. 152, No. 2, pp. 642-663, 1999.
21. Chao, J., Mei, R., Singh, R., and Shyy, W., “A Filter‐Based, Mass‐Conserving Lattice Boltzmann Method for Immiscible Multiphase Flows”, International Journal For Numerical Methods in Fluids, Vol. 66, No. 5, pp. 622-647, 2011.
22. He, X. and Li, N., “Lattice Boltzmann Simulation of Electrochemical Systems”, Computer Physics Communications, Vol. 129, No. 1-3, pp. 158-166, 2000.
23. Mohamad, A. A., Lattice Boltzmann Method, Vol. 70, London, Springer, 2011.
24. Singh, R., Bahga, S. S., and Gupta, A., “Electrohydrodynamics in Leaky Dielectric Fluids Using Lattice Boltzmann Method”, European Journal of Mechanics-B/Fluids, Vol. 74, pp. 167-179, 2019.
25. Komrakova A. E., Orest Sh., Eskinb, D., Derksen J. J., “A Lattice Boltzmann Simulations of Drop Deformation and Breakup in Shear Flow”, International Journal of Multiphase Flow, Vol. 59, pp. 24-43, 2014.
26. Rallison, J. M., “The deformation of Small Viscous Drops and Bubbles in Shear Flows”, Annual Review of Fluid Mechanics, Vol. 16, No. 1, pp. 45-66, 1984.
27. Cristini, V. and Renardy, Y., “Scalings for Droplet Sizes in Shear-Driven Breakup: Non-Microfluidic Ways to Monodisperse Emulsions”, Fluid Dynamics and Materials Processing, Vol. 2, No. 2, pp.77-94, 2006.