مقایسه مدل‌های همگن و بونجورنو با مدل اویلری-لاگرانژی در انتقال حرارت نانوسیالات در یک میکروکانال

نوع مقاله : مقاله پژوهشی

نویسنده

دانشگاه رازی

چکیده

در این مقاله انتقال حرارت نانوسیالات در یک میکروکانال با استفاده از مدل یکفازی به روش همگن و مدل دوفازی به روش بونجورنو به‌صورت عددی حل و با نتایج مدل اویلری-لاگرانژی به عنوان یک روش دقیق، مقایسه شده است. سیال پایه آب و نانوذرات از دو جنس اکسید آلومینیوم و مس هستند. غلظت حجمی نانوذرات تا 2% و قطر آن‌ها 100 نانومتر و برای پرهیز از افت فشار زیاد در میکروکانال، رژیم جریان آرام و محدوده عدد رینولدز از 250 تا 1000 است. معادلات حاکم شامل پیوستگی، ممنتوم و انرژی به روش حجم کنترل حل شده‌اند. برای حل معادلات ممنتوم از روش سیمپل استفاده شده است. نتایج نشان می‌دهند که حداکثر اختلاف نتایج مدل یک‌فازی همگن با نتایج مدل دوفازی اویلری-لاگرانژی برای نانوسیال آب-اکسد آلومینیوم در رینولدز 1000 و غلظت 2% اتفاق می‌افتد و برابر با 7/33 درصد و برای نانوسیال آب-مس در رینولدز 250 و غلظت 1% اتفاق می‌افتد و 6/6 درصد است. همچنین حداکثر اختلاف نتایج مدل بونجورنو با نتایج مدل اویلری-لاگرانژی برای نانوسیال آب-اکسید آلومینیوم در رینولدز 250 و غلظت 2% اتفاق می‌افتد و برابر با 3 درصد و برای نانوسیال آب-مس در رینولدز 1000 و غلظت 2% اتفاق می‌افتد و 2/09 درصد است. به این ترتیب با مدل بونجورنو می‌توان با حداکثر 3% خطا به نتایج روش دقیق اویلری-لاگرانژی دست یافت بدون آنکه به برنامه‌نویسی به روش پردازش موازی و امکاناتی مانند ابرکامپیوتر نیاز باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Homogenous and Buongiorno’ Model with Eulerian-Lagrangian Model for Nanofluids Heat Transfer in a Microchannel

نویسنده [English]

  • Javad Rostami
چکیده [English]

In this paper, nanofluid heat transfer in a microchannel has been studied using homogenous and Buongiorno’s models, and compared with Eulerian-Lagrangian model. The base fluid is water and the particles are Al2O3 and Cu with a diameter of 100nm. The volume fraction is up to 2% and Reynolds number is in the range of 250-1000. The governing equations including continuity, momentum and energy, have been solved using a control volume method (SIMPLE). The results show that for Water-Al2O3, the maximum difference between the homogeneous model and the Eulerian-Lagrangian model is 7.5%, and for Buongiorno’s model is 3%. It can be concluded that the Buongiorno’s model has an acceptable accuracy in results, and is simple enough to be used. On the other hand, unlike the Eulerian-Lagrangian, Buongiorno’s model doesn’t need the parallel processing and super computers, and is a good model to predict heat transfer of nanofluids.

کلیدواژه‌ها [English]

  • Nanofluid
  • Homogeneous one-phase model
  • Buongiorno’s two-phase model
  • Eulerian-Lagrangian two-phase model
  1. Rostami, J., “Convective Heat Transfer in a Wavy Channel Utilizing Nanofluids”, Journal of Enhanced Heat Transfer, Vol. 14, No. 4, pp. 333-352, )2007(.
  2. Behzadmehr, A., Saffar-Avval, and M., Galanis, N., “Prediction of Turbulent Forced Convection of a Nanofluid in a Tube with Uniform Heat Flux Using a Two Phase Approach”, International Journal of Heat and Fluid Flow, Vol. 28, pp. 211-219, )2007(.
  3. Akbari, M., Galanis, N., and Behzadmehr, A., “Comparative Analysis of Single and Two-Phase Models for CFD Studies of Nanofluid Heat Transfer”, International Journal of Thermal Sciences, Vol. 50, pp. 1343-1354, )2011(.
  4. Haghshenas Fard, M., Nasr Esfashany, M., and Talaie, M., R., “Numerical Study of Convective Heat Transfer of Nanofluids in a Circular Tube Two-Phase Model versus Single-Phase”, International Communication in Heat and Mass Transfer, Vol. 37, pp. 91-97, (2010).
  5. He, Y., Men, Y., Zhao, Y., Lu, H., and Ding, Y., “Numerical Investigation into the Convective Heat Transfer of TiO2 Nanofluids Flowing through a Straight Tube Under the Laminar Flow Conditions”, Applied Thermal Engineering, Vol. 29, 1965-1972, (2009).
  6. Rostami, J., and Abbassi, A., “Conjugate Heat Transfer in A Wavy Microchannel Using Nanofluid by Two-Phase Eulerian–Lagrangian Method”, Advanced Powder Technology, Vol. 27, 9-18, (2016).
  7. Mirzaei, M., Saffar-Avval, M., and Naderan, H., “Heat Transfer Investigation of Laminar Developing Flow of Nanofluids in a Microchannel Based on Eulerian-Lagrangian Approach”, Canadian Journal of Chemical Engineering, Vol. 92, pp. 1139-1149, (2014).
  8. Rostami, J., Abbassi, A., and Harting, J., “Heat Transfer by Nanofluids in Wavy Microchannel”, Advanced Powder Technology, Vol. 29, pp. 925-933, (2018).
  9. Rostami, J., Abbassi, A., and Saffar-Avval, M., “The Reasons of Differences Between One Phase and Two Phase Models of Nanofluids Heat Transfer Characteristics: Case Study Flow in A Wavy Microchannel”, Modares Mechanical Engineering, Vol. 3, No. 18, pp. 228-336 (2017), (in persian).
  10. Mirzaei, M., “Numerical Investigation of Nanofluid Heat Transfer in Laminar Two-Phase Model by Parallel Processing”, M.Sc Thesis, Amirkabir University of Technology, )2010(, (In persian).
  11. Rostami, J., “Numerical Solution of Conjugate Nanofluid Heat Transfer in A Wavy Channel Using Two-Phase Eulerian-Lagrangian and One Phase Dispersion Models”, Ph.D Thesis, Amirkabir University of Technology, )2015(, (In persian).
  12. Rostami, J., Abbassi, A., and Saffar-Avval, M., “Nemerical Heat Transfer by Nanofluids in Wavy Walls Microchannel Using Dispesion Method”, Amirkabir Journal of Mechanical Engineering, Vol. 51, No. 4, pp. 121-130, (2019), (in persian).
  13. Mokameli, A., and Saffar-Avval, M., “Prediction of Nanofluid Convective Heat Treansfer Using the Dispersion Model”, International Journal of Thermal Sciences, Vol. 49, pp. 471-478, (2010).
  14. Kalteh, M., Abbassi, A., Saffar-avval, M., and Harting, J., “Eulerian- Eulerian Two-Phase Numerical Simulation of Nanofluid Laminar Forced Convection in a Microchannel”, International Journal of Heat and Fluid Flow, Vol. 32, pp. 107-116, (2011).
  15. Mirmasoumi, S., and Behzadmehr, A., “Effect of Nanoparticles Mean Diameter on Mixed Convection Heat Transfer of a Nanofluid in a Horizontal Tube”, International Journal of Heat and Fluid Flow, Vol. 29, pp. 557-566, (2008).
  16. Mirmasoumi, S., and Behzadmehr, A.,” Numerical Study of Laminar Mixed Convection of a Nanofluid in a Horizontal Tube Using Two-Phase Mixture Model”, Applied Thermal Engineering, Vol. 28, pp. 717-727, (2008).
  17. Wen, D., Zhang, L., and He, Y., “Flow and Migration of Nanoparticle in a Single Channel”, Heat and Mass Transfer, Vol. 45, pp. 1061-1067, (2009).
  18. Buongiorno, J., “Convective Transport in Nanofluids”, Journal of Heat Transfer, Vol. 128, pp. 240-250, (2006).
  19. Turkyilmazoglu, M., “Buongiorno Model in A Nanofluid Filled Asymmetric Channel Fulfilling Zero Net Particle Flux at the Walls”, International Journal of Heat and Mass Transfer, Vol. 126, pp. 974-979, (2018).
  20. Sheikholeslami, M., Ganji, D. D., and Rashidi, M. M., “Magnetic Field Effect on Unsteady Nanofluid Flow and Heat Transferusing Buongiorno Model”, Journal of Magnetism and Magnetic Materials, Vol. 416, pp. 164-173, (2016).
  21. Hashim, I., Alsabery, A. I., Sheremet, M. A., and Chamkha, A. J., “Numerical Investigation of Natural Convection of Al2O3-Water Nanofluid in A Wavy Cavity with Conductive Inner Block Using Buongiorno’s Two-Phase Model”, Advanced Powder Technology, Vol. 30, pp. 399-414, (2019).
  22. Motlagh, S. Y., and Soltanipour, H., “Natural Convection of Al2O3-Water Nanofluid in an Inclined Cavityusing Buongiorno's Two-Phase Model”, International Journal of Thermal Sciences, Vol. 11, pp. 310-320, (2017).
  23. Izadi, M., Sinaei, S., Mehryan, S. A. M., and Oztop, H. F., “Natural Convection of A Nanofluid Between Two Eccentric Cylinders Saturated by Porous Material: Buongiorno’s Two Phase Model”, International Journal of Heat and Mass Transfer, Vol. 127, pp. 67-75, (2018).
  24. Garoosi, F., Jahanshaloo, L., and Garoosi, S., “Natural Convection of a Nanofluid Between Two Eccentric Cylinders Saturated by Porous Material: Buongiorno’s Two Phase Model”, Powder Technology, Vol. 269, pp. 296-311, (2015).
  25. Mousavi, S. H., Ahmadpour, A., and Saffar-Avval, M., “Numerical Simulation of Convective Heat Transfer of Non‑Newtonian Carbon‑Based Nanofuids in U‑Bend Tubes Using Buongiorno’s Model”, Journal of Thermal Analysis and Calorimetry, DOI: 10.1007/s10973-020-10365-y, (2020)
  26. Maiga, S. E. B., Nguyen, C. T., Galanis, N., Roy, G., Mare, T., and Coqueux, M., “Heat Transfer Enhancement in Turbulent Tube Flow Using Al2O3 Nanoparticle Suspension”, International Journal of Numerical Method for Heat and Fluid Flow, Vol. 16, No. 3, pp. 275-292, (2006).
  27. Brinkman, H. C., “The Viscosity of Concentrated Suspension and Solution”, The Journal of Chemical Physics, Vol. 20, pp. 571-581, (1952).
  28. Patel, H., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N. and Das, S. K., “A Micro-Convection Model for Thermal Conductivity of Nanofluids”, Journal of Physics, Vol. 65, No. 5, pp. 863-869, (2005).
  29. Patankar, S. V., and Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat and Mass Transfer, Vol. 15, pp. 1787-1806, (1972).
  30. Spalding, D. B., “A Novel Finite Difference Formulation for Differential Expressions Involving Both First and Second Derivatives”, Journal of Numerical Methods for Engineering, Vol. 4, pp. 551-559, )1972(.
  31. Rhie, C. M., and Chow, W. L., “Numerical Study of the Turbulent Flow Past an Airfoil with Trading Edge Separation”, AIAA Journal, Vol. 21, No. 11, pp. 1525-1535, )1983(.
  32. Ebadian, M. A., and Dong, Z. F., “Forced Convection, Internal Flow in Ducts”, in. W. M. Rohsenow, J. P. Hartnett, and Cho, Y. I. Eds., Handbook of Heat Transfer, McGraw‐Hill, New York, 1998.
  33.  Rostami, J., “Convective Heat Transfer by Micro-Encapsulated PCM in A Mini-Duct”, International Journal of Thermal Sciences, Vol. 161, 106737, )2021(. 

تحت نظارت وف ایرانی