طراحی قانون هدایت مشارکتی بهینه در مواجهه با اهداف با قابلیت مانورپذیری بالا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی امیرکبیر تهران

2 ذانشگاه صنعتی مالک اشتر تهران

چکیده

این پژوهش به مسالهای میپردازد که در آن دو دنبالکننده یک هدف با مانورپذیری بالاتر را دنبال میکنند. هدف مقاله ارائه یک قانون هدایت مشارکتی است که با استفاده از آن علیرغم کمتر بودن مانورپذیری دنبالکنندهها نسبت به هدف، خطای حالت نهایی حداقل یکی از دنبالکنندهها از یک حد آستانه کمتر باشد. در این راستا یک راهبرد مبتنی بر تفکیک بهینه نقش دنبال‌کنندهها ارائه میشود. مطابق این  راهبرد نقش دنبالکنندهها به دو بخش 1) دنبال کردن هدف و 2) پوشش فضای گریز هدف تقسیم میشود و در هر لحظه دنبالکننده نزدیکتر به هدف سهم بیشتری در دنبالکردن هدف و دنبالکننده دورتر سهم بیشتری در پوشش فضای گریز هدف بر عهده دارد. در ادامه این راهبرد به صورت یک مساله کنترل غیرخطی بهینه مقید فرموله میشود؛ حل این مسئله، قانون هدایت مطلوب برای برآورده نمودن این راهبرد را نتیجه میدهد. جهت حل این مسئله هدایت غیرخطی بهینه مقید از روش کنار‌هم‌گذاری مستقیم  همراه با برنامهریزی غیرخطی که یک رویکرد بهینه‌سازی عددی است، استفاده می‌شود. در این مقاله فرض شده است که 1- دنبال‌کنندهها و هدف هر سه با سرعت ثابت حرکت می‌کنند و 2- دنبالکنندهها دارای ناحیه تخریب هستند، به این مفهوم که قرار گرفتن هدف در ناحیهای اطراف دنبالکننده سبب منهدم شدن آن میشود. کارایی این قانون هدایت مشارکتی برای سناریوهای مختلف با استفاده از نتایج شبیهسازی متعدد اعتبارسنجی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Design of an Optimal Cooperative Guidance Law Confronting Evaders with High Maneuver

نویسندگان [English]

  • Hossein Nouri 1
  • Saeed Nasrollahi 2
1
2
چکیده [English]

The problem of cooperative guidance of two pursuers against an evader equipped with higher maneuverability is investigated. The goal is that the distance between the evader and at least one of the pursuers becomes less than a predetermined threshold at the end of the flight time. To achieve this goal, firstly, the roles of pursuers are divided into two units, which include 1) pursuing the evader 2) Observing the evader’s scape space. Secondly, a novel cooperative guidance law based on the optimal separation of roles of the pursuers is proposed and formulated into a constrained nonlinear optimal control problem. Thirdly, the problem is solved using the Direct Collocation with Nonlinear Programming (DCNLP) method which is an optimization approach. Finally, several numerical simulations are presented to verify the effectiveness of the proposed cooperative guidance law.

کلیدواژه‌ها [English]

  • Terminal Phase Cooperative Guidance
  • Highly Maneuverable Evader
  • Optimal Separation of Roles
  • Constrained Optimal Control
  • Line of Sight Rate
  • Direct Collocation with Nonlinear Programming
  1. Zarchan, P., “Tactical and Strategic Missile Guidance, Sixth Edition”, American Institute of Aeronautics and Astronautics, Inc. 2012.
  2. Guelman, M. “A Qualitative Study of Proportional Navigation”, IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-7, No. 4, pp. 637-643, 1971.
  3. Yuan, P. J., and Hsu, S. C., “Solutions of Generalized Proportional Navigation with Maneuvering and Nonmaneuvering Targets”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 1, pp. 469-474, 1995.
  4. Nikusokhan, M., and Nobahari, H., “Closed-Form Optimal Cooperative Guidance Law Against Random Step Maneuver”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 1, pp. 319-336, 2016.
  5. Murtaugh, S. A., and Criel, H. E., “Fundamentals of Proportional Navigation”, IEEE Spectrum, Vol. 3, No. 12, pp. 75-85, 1966.
  6. Talole, S. E., Ghosh, A., and Phadke, S. B., “Proportional Navigation Guidance Using Predictive and Time Delay Control”, Control Engineering Practice, Vol. 14, No. 12, pp. 1445-1453, 2006.
  7. He, S., and Lin, D., “Guidance Laws Based on Model Predictive Control and Target Manoeuvre Estimator”, Transactions of the Institute of Measurement and Control, Vol. 38, No. 12, pp. 1509-1519, 2016.
  8. Li, Z., Xia, Y., Su, C. Y., Deng, J., Fu, J., and He, W., “Brief Papers Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization”, IEEE Transactions on Neural Networks and Learning Systems, Vol. 26, No. 8, pp. 1803, 2015.
  9. Golestani, M., Mohammadzaman, I., and Vakili. AR., “Finite-Time Convergent Guidance Law Based on Integral Backstepping Control”, Aerospace Science and Technology, Vol. 39, pp. 370-376, 2014.
  10. Wang, X., and Lu, X., “Three-Dimensional Impact Angle Constrained Distributed Guidance Law Design for Cooperative Attacks”, ISA Transactions, Vol. 73, pp. 79-90, 2018.
  11. Jeon, I. S., Lee, J. I., and Tahk, M. J., “Homing Guidance Law for Cooperative Attack of Multiple Missiles”, Journal of Guidance, Control, and Dynamics, Vol. 33, No. 1, pp. 275-280, 2010.
  12. Zhou, J., and Yang, J., “Distributed Guidance Law Design for Cooperative Simultaneous Attacks with Multiple Missiles”, Journal of Guidance, Control, and Dynamics, Vol. 39, No. 10, pp. 2436-2444, 2016.
  13. Su, W., Shin, H. S., Chen, L., and Tsourdos, A., “Cooperative Interception Strategy for Multiple Inferior Missiles Against One Highly Maneuvering Target”, Aerospace Science and Technology, Vol. 80, pp. 91-100, 2018.
  14. Su, W., Li, K., and Chen, L., “Coverage-Based Three-Dimensional Cooperative Guidance Strategy Against Highly Maneuvering Target”, Aerospace Science and Technology, Vol. 85, pp. 556-566, 2019.
  15. Wang, X. H., and Tan, C. P., “3-D Impact Angle Constrained Distributed Cooperative Guidance for Maneuvering Targets without Angular-Rate Measurements”, Control Engineering Practice, Vol. 78, pp. 142-159, 2018.
  16. Jeon, I. S., Lee, J. I., and Tahk, M. J., “Impact-Time-Control Guidance Law for Anti-Ship Missiles”, IEEE Transactions on Control Systems Technology, Vol. 14, No. 2, pp. 260-266, 2006.
  17. Cho, N., and Kim, Y., “Modified Pure Proportional Navigation Guidance Law for Impact Time Control” , Journal of Guidance, Control, and Dynamics, Vol. 39, No. 4, pp. 852-872, 2016.
  18. Zhang, Y., Wang, X., and Ma, G., “Impact Time Control Guidance Law with Large Impact Angle Constraint”, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 229, No. 11, pp. 2119-2131, 2015.
  19. Jung, B., and Kim, Y., “Guidance Laws for Anti-Ship Missiles Using Impact Angle and Impact Time”, AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 3048-3060, 2006.
  20. Tekin, R., Erer, K.S., and Holzapfel, F., “Polynomial Shaping of the Look Angle for Impact-Time Control”, Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, pp. 2666-2671, 2017.
  21. Wang, X., Zhang, Y., and Wu, H., “Distributed Cooperative Guidance of Multiple Anti-Ship Missiles with Arbitrary Impact Angle Constraint”, Aerospace Science and Technology, Vol. 46, pp. 299-311, 2015.
  22. Zhao, S., and Zhou, R., “Cooperative Guidance for Multimissile Salvo Attack”, Chinese Journal of Aeronautics, Vol. 21, No. 6, pp. 533-539, 2008.
  23. Zhang, Y., Wang, X., and Wu, H., “A Distributed Cooperative Guidance Law for Salvo Attack of Multiple Anti-Ship Missiles”, Chinese Journal of Aeronautics, Vol. 28, No. 5, pp. 1438-1450, 2015.
  24. Kang, S., Wang, J., Li, G., Shan, J., and Petersen, I.R., “Optimal Cooperative Guidance Law for Salvo Attack: An MPC-Based Consensus Perspective”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 5, pp. 2397-2410, 2018.
  25. He, S., Wang, W., Lin, D., and Lei, H., “Consensus-Based Two-Stage Salvo Attack Guidance”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 3, pp. 1555-1566, 2018.
  26. He, S., Kim, M., Song, T., and Lin, D., “Three-Dimensional Salvo Attack Guidance Considering Communication Delay”, Aerospace Science and Technology, Vol. 73, pp. 1-9, 2018.
  27. Song, J., Song, S., and Xu, S., “Three-Dimensional Cooperative Guidance Law for Multiple Missiles with Finite-Time Convergence”, Aerospace Science and Technology, Vol. 67, pp. 193-205, 2017.
  28. Wei, X., Yang, J., and Fan, X., “Distributed Optimal Guidance Laws for Multiple Unmanned Aerial Vehicles Attacking A Moving Target”, arXiv, Vol. 14, No. 8, pp. 1-11, 2019.
  29. Shaferman, V., and Shima, T., “Cooperative Optimal Guidance Laws for Imposing A Relative Intercept Angle”, Journal of Guidance, Control, and Dynamics, Vol. 38, No. 8, pp. 1395-1408, 2015.
  30. Sinha, A., Kumar, S. R., and Mukherjee, D., “Three-Dimensional Nonlinear Cooperative Salvo Using Event-Triggered Strategy”, Journal of Guidance, Control, and Dynamics, Vol. 44, No. 2, pp. 328-342, 2021.
  31. Kang, L., Wang, J., Lee, C. H., Zhou, R., and Zhao, S., “Distributed Cooperative Guidance for Multivehicle Simultaneous Arrival Without Numerical Singularities”, Journal of Guidance, Control, and Dynamics, Vol. 43, No. 7, pp. 1365-1373, 2020.
  32. Zhai, C., He, F., Hong, Y., Wang, L., and Yao, Y., “Engineering Notes Coverage-Based Interception Algorithm of Multiple Interceptors Against the Target Involving Decoys”, Journal of Guidance, Control, and Dynamics, Vol. 39, No. 7, pp. 1646-1652, 2016.
  33. Ramana, M. V., and Kothari, M., “Pursuit Strategy to Capture High-Speed Evaders Using Multiple Pursuers”, Journal of Guidance, Control, and Dynamics, Vol. 40, No. 1, pp. 139-149, 2017.
  34. Su, W., Shin, H. S., Chen, L., and Tsourdos, A., “Cooperative Interception Strategy for Multiple Inferior Missiles Against one Highly Maneuvering Target”, Aerospace Science and Technology, Vol. 80, pp. 91-100, 2018.
  35. Su, W., Li, K., and Chen, L., “Coverage-Based Three-Dimensional Cooperative Guidance Strategy Against Highly Maneuvering Target”, Aerospace Science and Technology, Vol. 85, pp. 556-566, 2019.
  36. Rendón, S. V., “Trajectory Planning Based on Collocation Methods for Multiple Aerial and Ground Autonomous Vehicles”, Ph.D. Thesis, Depósito de Investigación Universidad de Sevilla , Sevilla, 2015.
  37. Turnbull, O., and Richards, A., “Collocation Methods for Multi-Vehicle Trajectory Optimization” , 2013 European Control Conference (ECC), Zurich, Switzerland, 1230-1235, 2013.
  38. Tang, S., and Conway, B. A., “Optimization of Low-Thrust Interplanetary Trajectories Using Collocation and Nonlinear Programming”, Journal of Guidance, Control, and Dynamics, Vol. 18, No. 3, pp. 599-604, 1995.
  39. Coverstone-Carroll, V., and Prussing, J. E., “Optimal Cooperative Power-Limited Rendezvous with Propellant Constraints”, Astrodynamics Conference, 246-255, 1992.
  40. Herman, A. L., and Conway, B. A., “Direct Optimization Using Collocation Based on High-Order Gauss-Lobatto Quadrature Rules”, Journal of Guidance, Control, and Dynamics, Vol. 19, No. 3, pp. 592–599, 1996.
  41. Enright, P. J., and Conway, B. A., “Optimal Finite-Thrust Spacecraft Trajectories Using Collocation and Nonlinear Programming”, Journal of Guidance, Control, and Dynamics, Vol. 14, No. 5, pp. 981-985, 1991.
  42. Roh, W., and Kim, Y., “Trajectory Optimization for A Multi-Stage Launch Vehicle Using Time Finite Element and Direct Collocation Methods”, Engineering Optimization, Vol. 34, No. 1, pp. 15-32, 2002.
  43. Becerra, V. M., “Practical Direct Collocation Methods for Computational Optimal Control”, In Fasano G., Pintér J. (eds) Modeling and Optimization in Space Engineering. Springer Optimization and Its Applications, Vol 73. Springer, New York, NY, 2012.
  44. Subbarao, K., and Shippey, B. M., “Hybrid Genetic Algorithm Collocation Method for Trajectory Optimization”, Journal of Guidance, Control, and Dynamics, Vol. 32, No. 4, pp. 1396-1403, 2009.

تحت نظارت وف ایرانی