ارتعاشات غیرخطی پوسته‌ی استوانه‌ای تقویت‌شده به صورت مدرج تابعی با ورقک‌های گرافنی به کمک روش مقیاس چندگانه

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، دانشگاه صنعتی قم، قم، ایران

چکیده

در این پژوهش، رفتار دینامیک غیرخطی پوسته‌ی استوانه‌ای تقویت‌شده با ورقک‌های گرافنی دارای توزیع یکنواخت و غیریکنواخت مورد بررسی قرار می‌گیرد. برای این منظور، با در نظر گرفتن تئوری کلاسیک پوسته‌های نازک و بهره‌گیری از مدل غیرخطی فون کارمن در روابط کرنش-جابه‌جایی، ابتدا معادلات حرکت حاکم استخراج شده و خواص مکانیکی پوسته‌ی تقویت‌شده نیز با استفاده از مدل میکرومکانیک هالپین-تسای و قانون اختلاط تعیین می‌شود. سپس معادلات دیفرانسیل جزئی حاکم، به کمک روش گالرکین به معادلات دیفرانسیل معمولی غیرخطی تبدیل شده و در ادامه، این معادلات با روش اغتشاشی مقیاس چندگانه حل می‌گردد. به‌منظور صحت‌سنجی، نتایج به‌دست‌آمده با داده‌های موجود در مراجع و همچنین روش عددی رانگ-کوتا مقایسه می‌شود. در پایان، تأثیر پارامترهای مختلف ماده‌ی هدفمند نظیر تعداد لایه‌ها، الگوهای توزیع ورقک‌های گرافن شامل  UD، FG-X، FG-O  و FG-V و نیز درصد وزنی این ورقک‌ها بر رفتار دینامیک غیرخطی پوسته، در قالب منحنی پاسخ فرکانسی برای تشدید اولیه، بررسی می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear Vibrations of Functionally Graded Graphene Reinforced Composite Cylindrical Shells Using the Multiple Scale Method

نویسندگان [English]

  • Roham Afshari
  • Nima Mohandesi
  • Mostafa Talebitooti
Department of Mechanical Engineering, Qom University of Technology, Qom, Iran
چکیده [English]

In this research, the nonlinear dynamic behavior of a cylindrical shell reinforced with graphene platelets, examining both uniform and non-uniform distributions of the platelets, is explored. The classical shell theory, complemented by von Karman's nonlinear model for strain-displacement relationships, facilitates the derivation of the governing equations of motion. The mechanical properties of the reinforced shell are ascertained through the Halpin-Tsai micromechanical model and the rule of mixtures. For the transition from partial differential equations to nonlinear ordinary differential equations, the Galerkin method is employed. These resultant equations are subsequently addressed using a multiple scale method. Initial validation of the proposed approach is achieved by comparing the results with the existing literature, and by employing the Runge-Kutta numerical method. Following this validation, the study investigates the impact of various parameters associated with the functionally graded material, such as the number of layers, the distribution patterns of the graphene platelets (including uniform distribution, FG-X, FG-O, and FG-V), and the proportion of these platelets in the composition, all of which significantly influence the nonlinear dynamic behavior of the shell as represented by the response curves for the primary resonance frequency.

کلیدواژه‌ها [English]

  • Nonlinear Vibration
  • Functionally Graded Graphene Platelets
  • Multiple Scale Method
  • Primary Resonance
  • Hapin-Tsai Model
[1] Young R. J., Kinloch I. A., Gong L., and Novoselov K. S., “The mechanics of graphene nanocomposites: A review”, Composites Science and Technology, Vol. 72, No. 12, pp. 1459–1476, 2012
[2] Khatounabadi M., Jafari M., and Asemi K., “Finite element analysis of free vibration of functionally graded porous circular plate reinforced with graphene”, Aerospace Knowledge and Technology Journal, Vol. 12, No. 1, pp. 163–181, 2023.
[3] Mokhtari M. A., “Thermal stability analysis of cylindrical shell reinforced with GPL graphene sheets using differential squares method”, Iranian Journal of Mechanical Engineering Transactions of ISME, Vol. 22, No. 4, pp. 51–71, 2021.
[4] Arefi M., Moghaddam S. K., M.-R. Bidgoli E., Kiani M., and Civalek O., “Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads”, Composite Structures, Vol. 255, p. 112924, 2021.
[5] Van Do V. N. and Lee C.-H., “Bézier extraction based isogeometric analysis for bending and free vibration behavior of multilayered functionally graded composite cylindrical panels reinforced with graphene platelets”, International Journal of Mechanical Sciences, Vol. 183, p. 105744, 2020.
[6] Wang Y., Feng C., Zhao Z., and Yang J., “Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL)”, Composite Structures, Vol. 202, pp. 38–46, 2018.
[7] Abedini Baghbadorani A. and Kiani Y., “Free vibration analysis of functionally graded cylindrical shells reinforced with graphene platelets”, Composite Structures, Vol. 276, p. 114546, 2021.
[8] Nguyen M.-Q. and Dinh G.-N., “Parametric study on free vibration of functionally graded graphene-nanoplatelet reinforced funnel shell with a complex profile”, Proceedings of the International Conference on Advanced Mechanical Engineering, Automation, and Sustainable Development 2021 (AMAS2021), pp. 615–620, 2022.
[9]  Babaei M., Kiarasi F., Hossaeini Marashi S. M., Ebadati M., Masoumi F., and Asemi K., “Stress wave propagation and natural frequency analysis of functionally graded graphene platelet-reinforced porous joined conical–cylindrical–conical shell”, Waves in Random and Complex Media, pp. 1–33, 2021.
[10] Javani M., Kiani Y., and Eslami M. R., “On the free vibrations of FG-GPLRC folded plates using GDQE procedure”, Composite Structures, Vol. 286, p. 115273, 2022.
[11] Mirzaei M. and Abbasi M., “Dynamic response of moderately thick graphene reinforced composite cylindrical panels under the action of moving load”, Engineering Analysis with Boundary Elements, Vol. 146, pp. 292–305, 2023.
[12] Zhou Y. et al., “Free vibration analyses of stiffened functionally graded graphene-reinforced composite multilayer cylindrical panel”, Mathematics, Vol. 11, No. 17, p. 3662, 2023.
[13] Ghasemi H., Mohammadi Y., and Ebrahimi F., “Free vibration analysis of FG‐GPL and FG‐CNT hybrid laminated nano composite truncated conical shells using systematic differential quadrature method”, ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 103, No. 11, 2023.
[14] Mirzaei M. and Rabiei R., “On the free and forced vibrations of porous GPL reinforced composite conical panels using a Legendre-Ritz method”, Engineering Analysis with Boundary Elements, Vol. 163, pp. 378–393, 2024.
[15] Huang T., Ma Y., Zhao T., Yang J., and Wang X., “Free vibration analysis of spinning sandwich annular plates with functionally graded graphene nanoplatelet reinforced porous core”, Materials, Vol. 15, No. 4, p. 1328, 2022.
[16] Abdollahzadeh Jamalabadi M. Y., Borji P., Habibi M., and Pelalak R., “Nonlinear vibration analysis of functionally graded GPL-RC conical panels resting on elastic medium”, Thin-Walled Structures, Vol. 160, p. 107370, 2021.
[17] Khayat M., Baghlani A., Dehghan S. M., and Najafgholipour M. A., “Geometrically nonlinear dynamic analysis of functionally graded porous partially fluid-filled cylindrical shells subjected to exponential loads”, Journal of Vibration and Control, Vol. 28, No. 7–8, pp. 758–772, 2022.
[18] Javani M., Kiani Y., and Eslami M. R., “Geometrically nonlinear free vibration of FG-GPLRC circular plate on the nonlinear elastic foundation”, Composite Structures, Vol. 261, p. 113515, 2021.
[19] Shen H.-S., Xiang Y., and Lin F., “Nonlinear vibration of functionally graded graphene-reinforced composite laminated plates in thermal environments”, Computer Methods in Applied Mechanics and Engineering, Vol. 319, pp. 175–193, 2017.
[20] Niu Y., Yao M., and Wu Q., “Nonlinear vibrations of functionally graded graphene reinforced composite cylindrical panels”, Applied Mathematical Modelling, Vol. 101, pp. 1–18, 2022.
[21] Kazemi M., Rad M. H. G., and Hosseini S. M., “Geometrically non-linear vibration and coupled thermo-elasticity analysis with energy dissipation in FG multilayer cylinder reinforced by graphene platelets using MLPG method”, Journal of Vibration Engineering & Technologies, Vol. 11, No. 1, pp. 355–379, 2023.
[22] Saboori R. and Ghadiri M., “Nonlinear forced vibration analysis of PFG-GPLRC conical shells under parametric excitation considering internal and external resonances”, Thin-Walled Structures, Vol. 196, p. 111474, 2024.
[23] Cho J.-R., “Large amplitude vibration of FG-GPL reinforced conical shell panels on elastic foundation”, Materials, Vol. 16, No. 17, p. 6056, 2023.
[24] Reddy J. N., *Theory and Analysis of Elastic Plates and Shells*, CRC Press, 2006.
[25] Brush B. O. and Almroth D. O., *Buckling of Bars, Plates, and Shells*, 1975.
[26] Ahmadi H. and Foroutan K., “Nonlinear primary resonance of spiral stiffened functionally graded cylindrical shells with damping force using the method of multiple scales”, Thin-Walled Structures, Vol. 135, pp. 33–44, 2019.  
[27] Rao S. S., *Vibration of Continuous Systems*, John Wiley & Sons, 2019.
[28] Gao K., Gao W., Wu B., Wu D., and Song C., “Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales”, Thin-Walled Structures, Vol. 125, pp. 281–293, 2018.

ارتقاء امنیت وب با وف ایرانی