بررسی حالت‌های پایدار استاتیکی ورق مستطیلی مرکب دوپایداره با الیاف منحنی‌شکل با لایه‌های پیزوالکتریک

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

در این مقاله، به تحلیل استاتیکی یک ورق مستطیلی مرکب دوپایداره با الیاف منحنی ‌شکل و شرایط ‌مرزی آزاد که دارای لایه‌های پیزوالکتریک تقویت‌شده با ماکروالیاف است، پرداخته شده‌است. برای این منظور، ابتدا انرژی‌های پتانسیل و کار نیروهای خارجی ورق مستطیلی مرکب با استفاده از رابطه‌های کرنش-جابه‌جایی غیرخطی ون‌کارمن استخراج شده‌اند. سپس حالت‌های پایدار ورق مستطیلی با استفاده از روش ریلی-ریتز و کمینه‌سازی انرژی پتانسیل سیستم به‌دست آمده‌اند. در ادامه، جابه‌جایی‌های قسمت‌های مختلف ورق مستطیلی با استفاده از مدل توسعه‌یافته هیر محاسبه و با نتایج آباکوس مقایسه شده‌اند. به‌منظور افزایش دقت نتایج، برای اولین‌‌بار، تابع شکل جدیدی از مرتبه هفت برای میدان جابه‌جایی خارج از صفحه ارائه شده‌است. در نهایت، جابه‌جایی‌های قسمت‌های مختلف ورق مستطیلی به همراه حالت‌های پایدار آن برای پنج حالت مختلف چینش الیاف منحنی ‌شکل استخراج شده‌اند و با مدل اجزای محدود مقایسه شده‌اند. نتایج نشان می‌دهند که بین نتایج دو روش سازگاری بسیار خوبی وجود دارد. همچنین در این مقاله برای اولین‌بار اثر وجود لایه‌های پیزوالکتریک تقویت‌شده با ماکروالیاف روی حالت‌های پایدار استاتیکی سیستم بررسی شده‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the static stable states of a bistable composite rectangular plate with curved fibers and piezoelectric layers

نویسندگان [English]

  • Ehsan Hendesi
  • Reza Tikani
  • Mohammad Sina Taki
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
چکیده [English]

In this paper, the static analysis of a bistable composite rectangular plate with curved fibers, free boundary conditions and piezoelectric layers reinforced with macro fibers is investigated. To this end, the potential energies and the work of external forces for the composite rectangular plate are derived using von Karman's nonlinear strain-displacement relations. The stable states of the rectangular plate are then determined using the Rayleigh-Ritz method through minimizing the potential energy of the system. Subsequently, the displacements of various parts of the rectangular plate are calculated using an extended higher-order model, and compared with the results by simulation in Abaqus. For the first time, a novel seventh-order shape function for the out-of-plane displacement field is proposed to enhance the accuracy of the results. Finally, the displacements and stable states of the rectangular plate are extracted for five different curved fiber configurations, and compared with the results from the finite element model. The findings demonstrate excellent agreement between the two methods. Additionally, this study uniquely examines the impact of piezoelectric layers reinforced with macro fibers on the static stable states of the system for the first time.

کلیدواژه‌ها [English]

  • Static Analysis
  • Composite Materials
  • Curved Fibers
  • Developed Hyer’s Theory
  • Pizoelectric layers
  1. Zhang, H., Yang, D., and Sheng, Y., ‟Performance-driven 3D printing of continuous curved carbon fibre reinforced polymer composites: A preliminary numerical study”, Composites Part B: Engineering, 151. pp. 256-264, 2018.
  2. Sanz-Herrera, J. A., Apolinar-Fernandez, A., Jimenez-Aires, A., Perez-Alcantara, P., Domínguez, J., and Reina-Romo, E.,‟Multiscale characterization of the mechanics of curved fibered structures with application to biological materials”, bioRxiv, 2024.
  3. Hyer, M. W., and Lee, H. H., “The use of curvilinear fiber format to improve buckling resistance of composite plates with central circular holes”, Composite Structures, Vol. 18. No. 3, pp. 239-261,1991.
  4. Waldhart, C., “Analysis of tow-placed, variable-stiffness laminates”, Doctoral dissertation, Virginia Tech. 1996.
  5. Langley, P. T., “Finite element modeling of tow-placed variable-stiffness composite laminates”, Doctoral dissertation, Virginia Tech. 1999.
  6. Jegley, D. C., Tatting, B. F., and Guerdal, Z., “Automated Finite Element Analysis of Elastically-Tailored Plates” (No. NASA/CR-2003-212679). 2003.
  7. Tatting, B. F., Gürdal, Z., and Jegley, D., “Design and manufacture of elastically tailored tow placed plates” (No. NASA/CR-2002-211919). 2002.
  8. Senocak, E., and Tanriover, H., “Analysis of composite plates with variable stiffness using Galerkin method”, The Aeronautical Journal, Vol. 111, No. 1118. Pp. 247-255. 2007.
  9. Lopes, C. S., Gürdal, Z., and Camanho, P. P., “Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates”, Composite Structures, Vol. 86, No. 9, pp. 897-907. 2008.
  10. Lopes, C. S., Gürdal, Z., and Camanho, P. P., “Tailoring for strength of composite steered-fibre panels with cutouts”, Composites Part A: Applied Science and Manufacturing, Vol. 41, No. 12, pp. 1760-1767. 2010.
  11. Sousa, C. S., Camanho, P. P., and Suleman, A., ‟Analysis of multistable variable stiffness composite plates”, Composite Structures, Vol. 98, pp. 34-46. 2013.
  12. Haldar, A., Reinoso, J., Jansen, E., and Rolfes, R., “Thermally induced multistable configurations of variable stiffness composite plates: Semi-analytical and finite element investigation”, Composite Structures., Vo. 183, pp. 161-175. 2018.
  13. Anilkumar, P. M., and Rao, B. N., “Impact of hygrothermal environment on the bistability of variable stiffness laminates with curvilinear fibre paths”, International Journal of Advances in Engineering Sciences and Applied Mathematics. Vol. 13, No. 1, pp. 33-48. 2021.
  14. Sharma, N., Swain, P. K., Maiti, D. K., and Singh, B. N., “Static and free vibration analyses and dynamic control of smart variable stiffness laminated composite plate with delamination”, Composite Structures., Vol. 280, pp. 114793. 2022.
  15. Shukla, R., and Pradyumna, S., “Static Response of a Variable Stiffness Composite Laminated Plate Embedded with a PFRC Layer”, In Recent Advances in Computational and Experimental Mechanics, Vol—I: Select Proceedings of ICRACEM 2020 (pp. 435-446). Springer Singapore.2022
  16. Anilkumar, P. M., Scheffler, S., Haldar, A., Brod, M., Rao, B. N., Jansen, E. L., and Rolfes, R., “Nonlinear dynamic modeling of bistable variable stiffness composite laminates”, Journal of Sound and Vibration., Vol. 545, pp. 117417. 2023.
  17. Guo, X., Dong, T., and Guo, Z., “Study on the rectangular bistable composite laminated plate through dynamic modeling, numerical simulation and experiment.” Acta Mechanica, Vol. 234, No. 9, pp. 4297-4313. 2023.
  18. Lemos, D. M., Marques, F. D., and Ferreira, A. J.,“A review on bistable composite laminates for aerospace applications”, Composite Structures, pp. 117756. 2023.
  19. Guo, X. T., Zhang, W., and Zhang, Y. F., “Experimental and numerical investigations on nonlinear snap-through vibrations of an asymmetrically composite laminated bistable thin plate simple supported at four corners”, Engineering Structures., Vol. 296, pp. 116926. 2023.
  20. Zhang, Z., Xu, J., Ma, Y., Sun, M., Chai, H., Wu, H., and Jiang, S., “Design and analysis of multistable curvilinear-fiber laminates based on continuous fiber 3D printing of thermosetting resin matrix”, Composite Structures., Vol. 307, pp. 116616. 2023.
  21. Guo, Z., Xu, J., Cao, D., Dong, T., and Ma, W.,‟ The static and dynamic regimes of the bistable asymmetric cross-ply composite laminated plates”, Mechanics of Advanced Materials and Structures, pp.1-15. 2023
  22. Taki, M. S., Tikani, R., and Ziaei-Rad, S., “A comprehensive formulation for determining static characteristics of mosaic multi-stable composite laminates under large deformation and large rotation”, Thin-Walled Structures, Vol. 197, pp. 111545. 2024.
  23. Mukherjee, P., Mukherjee, A., Arockiarajan, A., and Ali, S. F., ‟Dynamics of bistable composite plates”, International Journal of Non-Linear Mechanics, 104767. 2024.
  24. Sharma, N., Swain, P. K., Maiti, D. K., and Singh, B. N., ‟Static and free vibration analyses and dynamic control of smart variable stiffness laminated composite plate with delamination”, Composite Structures, Vol. 280, 114793.
  25. Hashemi, S., Shahri, P. K., Beigzadeh, S., Zamani, F., Eratbeni, M. G., Mahdavi, M., Heidari, A., Khaledi, H. and Abadi, M. R. R., ‟Nonlinear free vibration analysis of In-plane Bi-directional functionally graded plate with porosities resting on elastic foundations”, International Journal of Applied Mechanics, Vol. 14, No. 01, pp. 2150131. 2022.
  26. Lee, A. J., and Inman, D. J., “Electromechanical modelling of a bistable plate with macro fiber composites under nonlinear vibrations”, Journal of Sound and Vibration, Vol. 446, pp.326-342. 2019.
  27. Lee, A. J., and Inman, D. J., “A multifunctional bistable laminate: Snap-through morphing enabled by broadband energy harvesting”, Journal of Intelligent Material Systems and Structures, Vol. 29, No. 11, pp. 2528-2543, 2018.

ارتقاء امنیت وب با وف ایرانی