نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشکده مهندسی مکانیک. دانشگاه صنعتی اصفهان
2 دانشکده مهندسی مکانیک، دانشگاه صنعتی اصفهان
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Various functions can serve as weight functions in the numerical solution of nonlocal problems, including the error function. The value of the error function at a given point depends on the nonlocal parameter and the distance from the target point. To reduce computational costs in numerical procedures, interactions are often neglected between the points with a distance above a specific radius (interaction radius). Consequently, a relationship between the radius and the nonlocal parameter in the error function is established to determine the optimal interaction radius. Due to the widespread utilization of the finite element method in the solution of non-local problems, and considering application of the integral value of the weight function in two-phase kernels, the effect of element size on the calculation of the integral value is investigated. The findings indicate that, due to discretization, the error in calculating the integral value of the weight function increases as the ratio of the element size to the nonlocal parameter grows. This can result in an integral value exceeding 1, thereby violating the normalization condition of the weight function.
کلیدواژهها [English]